Skip to main content
Log in

A novel quantum representation of color digital images

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel quantum representation of color digital images (NCQI) in quantum computer. The freshly proposed quantum image representation uses the basis state of a qubit sequence to store the RGB value of each pixel. All pixels are stored into a normalized superposition state and can be operated simultaneously. Comparison results with the latest multi-channel representation for quantum image reveal that NCQI can achieve a quadratic speedup in quantum image preparation. Meanwhile, some NCQI-based image processing operations are discussed. Analyses and comparisons demonstrate that many color operations can be executed conveniently based on NCQI. Therefore, the proposed NCQI model is more flexible and better suited to carry out color quantum image processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Benioff, P.: The computer as a physical system: a microscopic quantum mechanical Hamiltonian models of computers as represented by Turing machines. J. Stat. Phys. 22(5), 563–591 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  2. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6/7), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  3. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)

    Article  ADS  Google Scholar 

  4. Long, G.L.: Grover algorithm with zero theoretical failure rate. Phys. Rev. A 64(2), 022307 (2001)

    Article  ADS  Google Scholar 

  5. Ai, Q., Li, Y.S., Long, G.L.: Influences of gate operation errors in the quantum counting algorithm. J. Sci. Technol. 21, 927 (2007)

    MathSciNet  Google Scholar 

  6. Venegas-Andraca, S.E., Bose, S.: Storing, processing and retrieving an image using quantum mechanics. Proc. SPIE Conf. Quantum Inf. Comput. 5105, 137–147 (2003)

    ADS  Google Scholar 

  7. Venegas-Andraca, S.E., Ball, J.L., Burnett, K., Bose, S.: Processing images in entangled quantum systems. Quantum Inf. Process. 9, 1–11 (2010)

    Article  MathSciNet  Google Scholar 

  8. Latorre, J.I.:Image compression and entanglement. arXiv:quant-ph/0510031 (2005)

  9. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression and processing operations. Quantum Inf. Process. 10(1), 63–84 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sun, B., Le, P.Q., Iliyasu, A.M.: A multi-channel representation for images on qunatum computers using the \(RGB\alpha \) color space. In: IEEE 7th International Symposium on Intelligent Signal Processing, Floriana, Malta, 2011, pp. 1–6 (2011)

  11. Li, H.S., Zhu, Q.X., Zhou, R.G., Li, M.C., et al.: Multidimensional color image storage, retrieval, and compression based on qunatum amplitudes and phases. Inf. Sci. 273, 212–232 (2014)

    Article  Google Scholar 

  12. Zhang, Y., Lu, K., Gao, Y.H., Xu, K.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12(9), 3103–3126 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Zhang, Y., Lu, K., Gao, Y.H., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 3340–3343 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Wang, J., Jiang, N., Wang, L.: Quantum image translation. Quantum Inf. Process. 14(5), 1589–1604 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Zhang, Y., Lu, K., Xu, K., Gao, Y.H.: Local feature point extraction for quantum images. Quantum Inf. Process. 14(5), 1573–1588 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Le, P.Q., Iliyasu, A.M., Dong, F.Y., Hirota, K.: Fast geometric transformation on qunatum images. IAENG Int. J. Appl. Math. 40(3), 113–123 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Jiang, N., Wang, L.: Quantum image scaling using nearest neighbor interpolation. Quantum Inf. Process. 14(5), 1559–1571 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Sang, J.Z., Wang, S., Niu, X.M.: Quantum realization of the nearest-neighbor interpolation method for FRQI and NEQR. Quantum Inf. Process. 15, 37–64 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation of China (61301099, 61100178, 61361166006, and 11201100). We deeply thanks the previous researcher’s work about NEQR. Thanks are due to many anonymous reviewers for their assistance with the discussion about our work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianzhi Sang or Qiong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sang, J., Wang, S. & Li, Q. A novel quantum representation of color digital images. Quantum Inf Process 16, 42 (2017). https://doi.org/10.1007/s11128-016-1463-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-016-1463-0

Keywords

Navigation