Skip to main content
Log in

Round-robin differential-phase-shift quantum key distribution with heralded pair-coherent sources

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Round-robin differential-phase-shift (RRDPS) quantum key distribution (QKD) scheme provides an effective way to overcome the signal disturbance from the transmission process. However, most RRDPS-QKD schemes use weak coherent pulses (WCPs) as the replacement of the perfect single-photon source. Considering the heralded pair-coherent source (HPCS) can efficiently remove the shortcomings of WCPs, we propose a RRDPS-QKD scheme with HPCS in this paper. Both infinite-intensity decoy-state method and practical three-intensity decoy-state method are adopted to discuss the tight bound of the key rate of the proposed scheme. The results show that HPCS is a better candidate for the replacement of the perfect single-photon source, and both the key rate and the transmission distance are greatly increased in comparison with those results with WCPs when the length of the pulse trains is small. Simultaneously, the performance of the proposed scheme using three-intensity decoy states is close to that result using infinite-intensity decoy states when the length of pulse trains is small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050 (1999)

    Article  ADS  Google Scholar 

  2. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)

    Article  ADS  Google Scholar 

  3. Bennett, C.H., Brassard, G.: Quantum cryptography. In: Proceedings of the IEEE International Conference Computers. Systems and Signal Processing, pp. 175–179. IEEE, New York (1984)

  4. Ma, X.F., Qi, B., Zhao, Y., Lo, H.K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72, 012326 (2005)

    Article  ADS  Google Scholar 

  5. Wang, X.B.: Three-intensity decoy-state method for device-independent quantum key distribution with basis-dependent errors. Phys. Rev. A 87, 012320 (2013)

    Article  ADS  Google Scholar 

  6. Zhao, S.M., Gong, L.Y., Li, Y.Q., Yang, H., Sheng, Y.B., Cheng, W.W.: A large-alphabet quantum key distribution protocol using orbital angular momentum entanglement. Chin. Phys. Lett. 30(6), 060305 (2013)

    Article  ADS  Google Scholar 

  7. Wang, L., Zhao, S.M., Gong, L.Y., Cheng, W.W.: Free-space measurement-device-independent quantum-key-distribution protocol using decoy states with orbital angular momentum. Chin. Phys. B 24(12), 120307 (2015)

    Article  ADS  Google Scholar 

  8. Chen, D., Zhao, S.H., Sun, Y.: Measurement-device-independent quantum key distribution with q-plate. Quantum Inf. Process. 14(12), 4575–4584 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Leverrier, A., Grangier, P.: Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation. Phys. Rev. Lett. 102, 180504 (2009)

    Article  ADS  Google Scholar 

  10. Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, P., Diamanti, E.: Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photonics 7, 378–381 (2013)

    Article  ADS  Google Scholar 

  11. Guo, Y., Lv, G., Zeng, G.: Balancing continuous-variable quantum key distribution with source-tunable linear optics cloning machine. Quantum Inf. Process. 14(11), 4323–4338 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Sasaki, T., Yamamoto, Y., Koashi, M.: Practical quantum key distribution protocol without monitoring signal disturbance. Nature 509, 475 (2014)

    Article  ADS  Google Scholar 

  13. Mizutani, A., Imoto, N., Tamaki, K.: Robustness of the round-robin differential-phase-shift quantum-key-distribution protocol against source flaws. Phys. Rev. A 92, 060303 (2015)

    Article  ADS  Google Scholar 

  14. Zhang, Z., Yuan, X., Cao, Z., Ma, X.: Round-robin differential-phase-shift quantum key distribution. arXiv:1505.02481 (2015)

  15. Zhang, Y.Y., Bao, W.S., Zhou, C., Li, H.W., Wang, Y., Jiang, M.S.: Practical decoy-state round-robin differential-phase shift quantum key distribution. arXiv:1605.02853 (2016)

  16. Cao, Z., Yin, Z.Q., Han, Z.F.: Trustworthiness of measurement devices in round-robin differential-phase-shift quantum key distribution. Phys. Rev. A 93, 022310 (2016)

    Article  ADS  Google Scholar 

  17. Yin, H.L., Fu, Y., Mao, Y., Chen, Z.B.: Detector-decoy quantum key distribution without monitoring signal disturbance. Phys. Rev. A 93, 022330 (2016)

    Article  ADS  Google Scholar 

  18. Guan, J.Y., Cao, Z., Liu, Y., Shen-Tu, G.L., Pelc, J.S., Fejer, M.M., Peng, C.Z., Ma, X., Zhang, Q., Pan, J.W.: Experimental passive round-robin differential phase-shift quantum key distribution. Phys. Rev. Lett. 114, 180502 (2015)

    Article  ADS  Google Scholar 

  19. Takesue, H., Sasaki, T., Tamaki, K., Koashi, M.: Experimental quantum key distribution without monitoring signal disturbance. Nat. Photonics 9, 827–831 (2015)

    Article  ADS  Google Scholar 

  20. Li, Y.H., Cao, Y., Dai, H., Lin, J., Zhang, Z., Chen, W., Xu, Y., Guan, J.Y., Liao, S.K., Yin, J., Zhang, Q., Ma, X., Peng, C.Z., Pan, J.W.: Experimental round-robin differential phase-shift quantum key distribution. Phys. Rev. A 93, 030302(R) (2016)

    Article  ADS  Google Scholar 

  21. Wang, S., Yin, Z.Q., Chen, W., He, D.Y., Song, X.T., Li, H.W., Zhang, L.J., Zhou, Z., Guo, G.C., Han, Z.F.: Experimental demonstration of a quantum key distribution without signal disturbance monitoring. Nat. Photonics 9, 832 (2015)

    Article  ADS  Google Scholar 

  22. Agarwal, G.S.: Generation of pair coherent states and squeezing via the competition of four-wave mixing and amplified spontaneous emission. Phys. Rev. Lett. 57, 827 (1986)

    Article  ADS  Google Scholar 

  23. Usenko, V.C., Paris, M.G.A.: Multiphoton communication in lossy channels with photon-number entangled states. Phys. Rev. A 75, 043812 (2007)

    Article  ADS  Google Scholar 

  24. Zhang, S.L., Zou, X.B., Li, C.F., Jin, C.H., Guo, G.C.: A universal coherent source quantum key distribution. Chin. Sci. Bull. 54, 1863–1871 (2009)

    MATH  Google Scholar 

  25. Zhu, F., Zhang, C.H., Liu, A.P., Wang, Q.: Enhancing the performance of the measurement-device-independent quantum key distribution with heralded pair-coherent sources. Phys. Lett. A 380, 1408–1413 (2016)

    Article  ADS  Google Scholar 

  26. U’Ren, A.B., Silberhorn, C., Banaszek, K., Walmsley, I.A.: Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks. Phys. Rev. Lett. 93, 093601 (2004)

    Article  ADS  Google Scholar 

  27. Horikiri, T., Kobayashi, T.: Decoy state quantum key distribution with a photon number resolved heralded single photon source. Phys. Rev. A 73, 032331 (2006)

    Article  ADS  Google Scholar 

  28. Dong, Y.L., Zou, X.B., Guo, G.C.: Generation of pair coherent state using weak cross-Kerr media. Phys. Lett. A 372, 5677–5680 (2008)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

The paper is supported in part by the National Natural Science Foundation of China (61271238 and 61475075) and the open research fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education (NYKL2015011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Wang.

Appendix

Appendix

1.1 The lower bound of the yield

First, Alice and Bob can estimate the lower bound of the background yield, \(Y_{0}^{L}\), by

$$\begin{aligned}&\nu _1^2P_\mathrm{post}(L\nu _{2})Q_{L\nu _{2}}-\nu _2^2P_\mathrm{post}(L\nu _{1})Q_{L\nu _{1}} \nonumber \\&\quad =\left( \nu _1^2-\nu _2^2\right) d_\mathrm{A}Y_0-L^2\nu _1^2\nu _2^2 \sum _{n=2}^{\infty }\left( \frac{(L\nu _1)^{2n-2}-(L\nu _2)^{2n-2}}{(n!)^2} \right. \nonumber \\&\qquad \left. [1-(1-d_\mathrm{A})(1-\eta _\mathrm{A})^n]Y_n\right) \le \left( \nu _1^2-\nu _2^2\right) d_\mathrm{A}Y_0, \end{aligned}$$
(22)

where the inequality is due to \(L^2\nu _1^2\nu _2^2 \sum _{n=2}^{\infty }\Big (\frac{(L\nu _1)^{2n-2}-(L\nu _2)^{2n-2}}{(n!)^2} [1-(1-d_\mathrm{A})(1-\eta _\mathrm{A})^n]Y_n\Big )\ge 0\). Thus, the lower bound of \(Y_{0}\) is given by

$$\begin{aligned} Y_{0}\ge Y_{0}^{L}=\max \left\{ \frac{\nu _{1}^{2}P_\mathrm{post}(L\nu _{2})Q_{L\nu _{2}} -\nu _{2}^{2}P_\mathrm{post}(L\nu _{1})Q_{L\nu _{1}}}{d_\mathrm{A}\left( \nu _{1}^{2}-\nu _{2}^{2}\right) },0 \right\} , \end{aligned}$$
(23)

where the equality sign will hold when \(\nu _{2}=0\). By \(P_\mathrm{post}(L\nu _{1})Q_{L\nu _{1}}-P_\mathrm{post}(L\nu _{2})Q_{L\nu _{2}}\), Alice and Bob have

$$\begin{aligned}&P_\mathrm{post}(L\nu _{1})Q_{L\nu _{1}}-P_\mathrm{post}(L\nu _{2})Q_{L\nu _{2}} \nonumber \\&\quad =L^2\left( \nu _1^2-\nu _2^2\right) [1-(1-d_\mathrm{A})(1-\eta _\mathrm{A})]Y_1+ \sum _{n=2}^{\infty }\left( \frac{(L\nu _1)^{2n}-(L\nu _2)^{2n}}{(n!)^2} \right. \nonumber \\&\qquad \left. \left[ 1-(1-d_\mathrm{A})(1-\eta _\mathrm{A})^n\right] Y_n\right) \nonumber \\&\quad \le L^2\left( \nu _1^2-\nu _2^2\right) [1-(1-d_\mathrm{A})(1-\eta _\mathrm{A})]Y_1+ \frac{\nu _1^{4}-\nu _2^{4}}{\mu ^4} \sum _{n=2}^{\infty }\left( \frac{(L\mu )^{2n}}{(n!)^2}\right. \nonumber \\&\qquad \left. \left[ 1-(1-d_\mathrm{A})(1-\eta _\mathrm{A})^n\right] Y_n\right) \nonumber \\&\quad =L^2\left( \nu _1^2-\nu _2^2\right) [1-(1-d_\mathrm{A})(1-\eta _\mathrm{A})]Y_1\nonumber \\&\qquad +\, \frac{\nu _1^{4}-\nu _2^{4}}{\mu ^4} \left( P_\mathrm{post}(L\mu )Q_{L\mu }-d_\mathrm{A}Y_0-L^2\mu ^2 \left[ 1-(1-d_\mathrm{A})(1-\eta _\mathrm{A})\right] Y_1\right) \nonumber \\&\quad \le L^2\left( \nu _1^2-\nu _2^2-\frac{\nu _1^{4}-\nu _2^{4}}{\mu ^2} \right) [1-(1-d_\mathrm{A})(1-\eta _\mathrm{A})]Y_1\nonumber \\&\qquad +\,\frac{\nu _1^{4}-\nu _2^{4}}{\mu ^4} \left[ P_\mathrm{post}(L\mu )Q_{L\mu }-d_\mathrm{A}Y_0^L\right] \end{aligned}$$
(24)

Here, the inequality that \(a^{i}-b^{i}\le a^{2}-b^{2}\) when \(a\ge b\ge 0\), \(a+b\le 1\) and \(i\ge 2\) is used to prove the first inequality in Eq. 24. The second inequality in Eq. 24 is due to Eq. 23. Then, they can obtain the lower bound of the single-photon pulse trains yield \(Y_{1}\),

$$\begin{aligned} Y_{1}\ge Y_{1}^{L}=\frac{P_\mathrm{post}(L\nu _{1})Q_{L\nu _{1}} -P_\mathrm{post}(L\nu _{2})Q_{L\nu _{2}}-\frac{\nu _{1}^{4}-\nu _{2}^{4}}{\mu ^{4}} \left[ P_\mathrm{post}(L\mu )Q_{L\mu }-d_\mathrm{A} Y_{0}^{L}\right] }{L^{2}\left( \nu _{1}^{2}-\nu _{2}^{2}- \frac{\nu _{1}^{4}-\nu _{2}^{4}}{\mu ^{2}}\right) [1-(1-d_\mathrm{A})(1-\eta _\mathrm{A})]}. \end{aligned}$$
(25)

Furthermore, Alice and Bob can estimate the lower bound of the two-photon pulse trains yield, \(Y_{2}^{L}\), by

$$\begin{aligned}&\left( \nu _2^2-\nu _3^2\right) P_\mathrm{post}(L\nu _{1})Q_{L\nu _{1}}-\left( \nu _1^2-\nu _3^2\right) P_\mathrm{post}(L\nu _{2})Q_{L\nu _{2}}\nonumber \\&\quad +\left( \nu _1^2-\nu _2^2\right) P_\mathrm{post}(L\nu _{3})Q_{L\nu _{3}} \nonumber \\&\qquad =\frac{L^4}{4}\left( \nu _1^2-\nu _2^2\right) \left( \nu _1^2-\nu _3^2\right) \left( \nu _2^2-\nu _3^2\right) \left[ 1-(1-d_\mathrm{A})(1-\eta _\mathrm{A})^2\right] Y_2 \nonumber \\&\qquad \quad + \sum _{n=3}^{\infty }\left( \frac{\left( \nu _2^2-\nu _3^2\right) \left[ (L\nu _1)^{2n}-(L\nu _2)^{2n}\right] +\left( \nu _2^2-\nu _1^2\right) \left[ (L\nu _2)^{2n}-(L\nu _3)^{2n}\right] }{(n!)^2} \right. \nonumber \\&\qquad \quad \left. [1-(1-d_\mathrm{A})(1-\eta _\mathrm{A})^n]Y_n\right) \nonumber \\&\qquad \le \frac{L^4}{4}\left( \nu _1^2-\nu _2^2\right) \left( \nu _1^2-\nu _3^2\right) \left( \nu _2^2-\nu _3^2\right) \left[ 1-(1-d_\mathrm{A})(1-\eta _\mathrm{A})^2\right] Y_2 \nonumber \\&\qquad \quad + \left( \left( \nu _2^{2}-\nu _3^{2}\right) \frac{\nu _1^{6}-\nu _2^{6}}{\mu ^{6}}+ \left( \nu _2^{2}-\nu _1^{2}\right) \frac{\nu _2^{6}-\nu _3^{6}}{\mu ^{6}}\right) \nonumber \\&\qquad \quad \sum _{n=3}^{\infty }\left( \frac{(L\mu )^{2n}}{(n!)^2}\left[ 1-(1-d_\mathrm{A})(1-\eta _\mathrm{A})^n\right] Y_n\right) \nonumber \\&\qquad =\frac{L^4}{4}\left( \nu _1^2-\nu _2^2\right) \left( \nu _1^2-\nu _3^2\right) \left( \nu _2^2-\nu _3^2\right) \left[ 1-(1-d_\mathrm{A})(1-\eta _\mathrm{A})^2\right] Y_2 \nonumber \\&\qquad \quad +\,\frac{\left( \nu _1^{2}-\nu _2^{2}\right) \left( \nu _2^{2}-\nu _3^{2}\right) \left( \nu _1^{2}-\nu _3^{2}\right) \left( \nu _1^{2}+\nu _2^{2}+\nu _3^{2}\right) }{\mu ^{6}} \bigg (P_\mathrm{post}(L\mu )Q_{L\mu }-d_\mathrm{A}Y_0 \nonumber \\&\qquad \quad -\,L^2\mu ^2 [1-(1-d_\mathrm{A})(1-\eta _\mathrm{A})]Y_1- \frac{L^4\mu ^4}{4} \left[ 1-(1-d_\mathrm{A})(1-\eta _\mathrm{A})^2\right] Y_2\bigg ) \nonumber \\&\qquad \le \frac{L^4}{4}\left( \nu _1^2-\nu _2^2\right) \left( \nu _1^2-\nu _3^2\right) \left( \nu _2^2-\nu _3^2\right) \left( 1-\frac{\nu _1^{2}+\nu _2^{2}+\nu _3^{2}}{\mu ^2}\right) \nonumber \\&\qquad \quad \left[ 1-(1-d_\mathrm{A})(1-\eta _\mathrm{A})^2\right] Y_2 + \frac{\left( \nu _1^{2}-\nu _2^{2}\right) \left( \nu _2^{2}-\nu _3^{2}\right) \left( \nu _1^{2}-\nu _3^{2}\right) \left( \nu _1^{2}+\nu _2^{2}+\nu _3^{2}\right) }{\mu ^{6}} \nonumber \\&\qquad \quad \left( P_\mathrm{post}(L\mu )Q_{L\mu }-d_\mathrm{A}Y_0^L - L^2\mu ^2 \left[ 1-(1-d_\mathrm{A})(1-\eta _\mathrm{A})\right] Y_1^L\right) \end{aligned}$$
(26)

Here, the inequality that \(a^{i}-b^{i}\le a^{3}-b^{3}\) when \(a\ge b\ge 0\), \(a+b\le 1\) and \(i\ge 3\) is used to prove the first inequality in Eq. 26. The second inequality in Eq. 26 is due to Eqs. 25 and 23. The lower bound of \(Y_{2}\) is

$$\begin{aligned}&Y_{2}\ge Y_{2}^{L}\nonumber \\&\quad =4\frac{\left( \nu _{2}^{2}-\nu _{3}^{2}\right) P_\mathrm{post}(L\nu _{1})Q_{L\nu _{1}} -\left( \nu _{1}^{2}-\nu _{3}^{2}\right) P_\mathrm{post}(L\nu _{2})Q_{L\nu _{2}} +\left( \nu _{1}^{2}-\nu _{2}^{2}\right) P_\mathrm{post}(L\nu _{3})Q_{L\nu _{3}}}{L^4\left( \nu _{1}^{2}-\nu _{2}^{2}\right) \left( \nu _{1}^{2}-\nu _{3}^{2}\right) \left( \nu _{2}^{2}-\nu _{3}^{2}\right) \left( 1-\frac{\nu _{1}^{2}+\nu _{2}^{2}+\nu _{3}^{2}}{\mu ^{2}}\right) \left[ 1-(1-d_\mathrm{A})(1-\eta _\mathrm{A})^2\right] } \nonumber \\&\qquad -\,4\frac{\frac{\nu _{1}^{2}+\nu _{2}^{2}+\nu _{3}^{2}}{L^4\mu ^{6}} \big (P_\mathrm{post}(L\mu )Q_{L\mu }-d_\mathrm{A} Y_{0}^{L}-(L\mu )^{2}[1-(1-d_\mathrm{A})(1-\eta _\mathrm{A})]Y_{1}^{L}\big )}{\left( 1-\frac{\nu _{1}^{2}+\nu _{2}^{2}+\nu _{3}^{2}}{\mu ^{2}}\right) \left[ 1-(1-d_\mathrm{A})(1-\eta _\mathrm{A})^2\right] }. \end{aligned}$$
(27)

1.2 The upper bound of the error rate

Alice and Bob can estimate the upper bound of the error rate, \(e_{1}^{U}\) and \(e_{2}^{U}\). According to the following inequality,

$$\begin{aligned}&P_\mathrm{post}(L\nu _{1})E_{L\nu _{1}}Q_{L\nu _{1}}-P_\mathrm{post}(L\nu _{2})E_{L\nu _{2}}Q_{L\nu _{2}} \nonumber \\&\quad =L^2\left( \nu _1^2-\nu _2^2\right) [1-(1-d_\mathrm{A})(1-\eta _\mathrm{A})]e_{1}Y_1\nonumber \\&\qquad +\sum _{n=2}^{\infty }\left( \frac{(L\nu _1)^{2n}-(L\nu _2)^{2n}}{(n!)^2} \left[ 1-(1-d_\mathrm{A})(1-\eta _\mathrm{A})^n\right] e_{n}Y_n\right) \nonumber \\&\quad \ge L^2\left( \nu _1^2-\nu _2^2\right) [1-(1-d_\mathrm{A})(1-\eta _\mathrm{A})]e_{1}Y_1, \end{aligned}$$
(28)

where the inequality is due to \(\sum _{n=2}^{\infty }\left( \frac{(L\nu _1)^{2n}-(L\nu _2)^{2n}}{(n!)^2} [1-(1-d_\mathrm{A})(1-\eta _\mathrm{A})^n]e_{n}Y_n\right) \ge 0\), the upper bound of \(e_{1}\) is given by

$$\begin{aligned} e_{1}\le e_{1}^{U}=\frac{P_\mathrm{post}(L\nu _{1})E_{L\nu _{1}}Q_{L\nu _{1}} -P_\mathrm{post}(L\nu _{2})E_{L\nu _{2}}Q_{L\nu _{2}}}{L^{2}\left( \nu _{1}^{2}-\nu _{2}^{2}\right) [1-(1-d_\mathrm{A})(1-\eta _\mathrm{A})]Y_{1}^{L}}. \end{aligned}$$
(29)

Then, Alice and Bob can estimate the upper bound of the two-photon pulse trains error rate, \(e_{2}^{U}\), by

$$\begin{aligned}&\left( \nu _2^2-\nu _3^2\right) P_\mathrm{post}(L\nu _{1})E_{L\nu _{1}}Q_{L\nu _{1}} -\left( \nu _1^2-\nu _3^2\right) P_\mathrm{post}(L\nu _{2})E_{L\nu _{2}}Q_{L\nu _{2}}\nonumber \\&\quad +\left( \nu _1^2-\nu _2^2\right) P_\mathrm{post}(L\nu _{3})E_{L\nu _{3}}Q_{L\nu _{3}} \nonumber \\&\qquad =\frac{L^4}{4}\left( \nu _1^2-\nu _2^2\right) \left( \nu _1^2-\nu _3^2\right) \left( \nu _2^2-\nu _3^2\right) \left[ 1-(1-d_\mathrm{A})(1-\eta _\mathrm{A})^2\right] e_2Y_2 \nonumber \\&\qquad \quad + \sum _{n=3}^{\infty }\left( \frac{\left( \nu _2^2-\nu _3^2\right) \left[ (L\nu _1)^{2n}-(L\nu _2)^{2n}\right] +\left( \nu _1^2-\nu _2^2\right) \left[ (L\nu _3)^{2n}-(L\nu _2)^{2n}\right] }{(n!)^2} \right. \nonumber \\&\qquad \quad \left[ 1\left. -(1-d_\mathrm{A})(1-\eta _\mathrm{A})^n\right] e_nY_n\right) \nonumber \\&\qquad \ge \frac{L^4}{4}\left( \nu _1^2-\nu _2^2\right) \left( \nu _1^2-\nu _3^2\right) \left( \nu _2^2-\nu _3^2\right) \left[ 1-(1-d_\mathrm{A})(1-\eta _\mathrm{A})^2\right] e_2Y_2 \end{aligned}$$
(30)

where the inequality is due to \(\sum _{n=3}^{\infty }\big (\frac{(\nu _2^2-\nu _3^2) [(L\nu _1)^{2n}-(L\nu _2)^{2n}] +(\nu _1^2-\nu _2^2)[(L\nu _3)^{2n}-(L\nu _2)^{2n}]}{(n!)^2} [1-(1-d_\mathrm{A})(1-\eta _\mathrm{A})^n]e_nY_n\big )\ge 0\), and the upper bound of \(e_{2}\) is given by

$$\begin{aligned}&e_{2}\le e_{2}^{U}\\&\quad =4\frac{\left( \nu _{2}^{2}-\nu _{3}^{2}\right) P_\mathrm{post}(L\nu _{1})Q_{L\nu _{1}} -\left( \nu _{1}^{2}-\nu _{3}^{2}\right) P_\mathrm{post}(L\nu _{2})Q_{L\nu _{2}} +\left( \nu _{1}^{2}-\nu _{2}^{2}\right) P_\mathrm{post}(L\nu _{3})Q_{L\nu _{3}}}{L^4\left( \nu _{1}^{2}-\nu _{2}^{2}\right) \left( \nu _{1}^{2}-\nu _{3}^{2}\right) \left( \nu _{2}^{2}-\nu _{3}^{2}\right) \left[ 1-(1-d_\mathrm{A})(1-\eta _\mathrm{A})^2\right] Y_{2}^{L}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhao, S. Round-robin differential-phase-shift quantum key distribution with heralded pair-coherent sources. Quantum Inf Process 16, 100 (2017). https://doi.org/10.1007/s11128-017-1550-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1550-x

Keywords

Navigation