Skip to main content
Log in

Enhancing quantum coherence and quantum Fisher information by quantum partially collapsing measurements

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We consider the enhancement effect of quantum partially collapsing measurements, i.e., weak measurement and quantum measurement reversal, on quantum coherence and quantum Fisher information, both of which are transmitted through a spin-chain channel. For the state parameter lying in the region \((\pi /2,\ \pi )\), weak measurement can enhance quantum coherence and quantum Fisher information. For the state parameter lying in the region \((0,\ \pi /2)\), quantum coherence and quantum Fisher information can be enhanced by quantum measurement reversal combined with weak measurement. We assume the probabilistic nature of the method should be responsible for the enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  2. Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)

    Article  ADS  Google Scholar 

  3. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  4. Pan, F., Qiu, L., Liu, Z.: The complementarity relations of quantum coherence in quantum information processing. Sci. Rep. 7, 43919 (2017)

    Article  Google Scholar 

  5. Abbott, D., Davies, P., Pati, A.K.: Quantum Aspects of Life. Imperial College Press, London (2008)

    Book  Google Scholar 

  6. Plenio, M.B., Huelga, S.F.: Dephasing-assisted transport: quantum networks and biomolecules. New J. Phys. 10, 113019 (2008)

    Article  ADS  Google Scholar 

  7. Rebentrost, P., Mohseni, M., Aspuru-Guzik, A.: Role of quantum coherence and environmental fluctuations in chromophoric energy transport. J. Phys. Chem. B 113, 9942 (2009)

    Article  Google Scholar 

  8. Lloyd, S.: Quantum coherence in biological systems. J. Phys. Conf. Ser. 302, 012037 (2011)

    Article  Google Scholar 

  9. Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015)

    Article  ADS  Google Scholar 

  10. Narasimhachar, V., Gour, G.: Low-temperature thermodynamics with quantum coherence. Nat. Commun. 6, 7689 (2015)

    Article  ADS  Google Scholar 

  11. Lostaglio, M., Korzekwa, K., Jennings, D., Rudolph, T.: Quantum coherence, time-translation symmetry, and thermodynamics. Phys. Rev. X 5, 021001 (2015)

    Google Scholar 

  12. Gardas, B., Deffner, S.: Thermodynamic universality of quantum carnot engines. Phys. Rev. E 92, 042126 (2015)

    Article  ADS  Google Scholar 

  13. Singh, U., Bera, M.N., Misra, A., Pati, A.K.: Erasing quantum coherence: an operational approach. arXiv: 1506.08186

  14. Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)

    Article  ADS  Google Scholar 

  15. Singh, U., Bera, M.N., Dhar, H.S., Pati, A.K.: Maximally coherent mixed states: complementarity between maximal coherence and mixedness. Phys. Rev. A 91, 052115 (2015)

    Article  ADS  Google Scholar 

  16. Xi, Z.J., Li, Y.M., Fan, H.: Quantum coherence and correlations in quantum system. Sci. Rep. 5, 10922 (2015)

    Article  ADS  Google Scholar 

  17. Yao, Y., Xiao, X., Ge, L., Sun, C.P.: Quantum coherence in multipartite systems. Phys. Rev. A 92, 022112 (2015)

    Article  ADS  Google Scholar 

  18. Cheng, S., Hall, M.J.W.: Complementarity relations for quantum coherence. Phys. Rev. A 92, 042101 (2015)

    Article  ADS  Google Scholar 

  19. Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114, 210401 (2015)

    Article  ADS  Google Scholar 

  20. Man, Z.X., Xia, Y.J., Franco, RLo: Cavity-based architecture to preserve quantum coherence and entanglement. Sci. Rep. 5, 13843 (2015)

    Article  ADS  Google Scholar 

  21. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic, New York (1976)

    MATH  Google Scholar 

  22. Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory. North-Holland, Amsterdam (1982)

    MATH  Google Scholar 

  23. Kay, S.M.: Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice Hall, Upper Saddle River (1993)

    MATH  Google Scholar 

  24. Genoni, M.G., Olivares, S., Paris, M.G.A.: Optical phase estimation in the presence of phase diffusion. Phys. Rev. Lett. 106, 153603 (2011)

    Article  ADS  Google Scholar 

  25. Lu, X.M., Sun, Z., Wang, X., Luo, S.L., Oh, C.H.: Broadcasting quantum Fisher information. Phys. Rev. A 87, 050302(R) (2013)

    Article  ADS  Google Scholar 

  26. Wootters, W.K.: Statistical distance and Hilbert space. Phys. Rev. D 23, 357 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  27. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  28. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  29. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photon. 5, 222 (2011)

    Article  ADS  Google Scholar 

  30. Kołodyński, J., Demkowicz-Dobrzański, R.: Phase estimation without a priori phase knowledge in the presence of loss. Phys. Rev. A 82, 053804 (2010)

    Article  ADS  Google Scholar 

  31. Ma, J., Huang, Y.X., Wang, X., Sun, C.P.: Quantum Fisher information of the Greenberger–Horne–Zeilinger state in decoherence channels. Phys. Rev. A 84, 022302 (2011)

    Article  ADS  Google Scholar 

  32. Berrada, K., Abdel-Khalek, S., Obada, A.S.: Quantum Fisher information for a qubit system placed inside a dissipative cavity. Phys. Lett. A 376, 1412 (2012)

    Article  ADS  MATH  Google Scholar 

  33. Zhang, Y.M., Li, X.W., Yang, W., Jin, G.R.: Quantum Fisher information of entangled coherent states in the presence of photon loss. Phys. Rev. A 88, 043832 (2013)

    Article  ADS  Google Scholar 

  34. Li, Y.L., Xiao, X., Yao, Y.: Classical-driving-enhanced parameter-estimation precision of a non-Markovian dissipative two-state system. Phys. Rev. A 91, 052105 (2015)

    Article  ADS  Google Scholar 

  35. Xiao, X., Yao, Y., Zhong, W.J., Li, Y.L., Xie, Y.M.: Enhancing teleportation of quantum Fisher information by partial measurements. Phys. Rev. A 93, 012307 (2016)

    Article  ADS  Google Scholar 

  36. Korotkov, A.N.: Continuous quantum measurement of a double dot. Phys. Rev. B 60, 5737 (1999)

    Article  ADS  Google Scholar 

  37. Mabuchi, H., Zoller, P.: Inversion of quantum jumps in quantum optical systems under continuous observation. Phys. Rev. Lett. 76, 3108 (1996)

    Article  ADS  Google Scholar 

  38. Nielsen, M.A., Caves, C.M.: Reversible quantum operations and their application to teleportation. Phys. Rev. A 55, 2547 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  39. Korotkov, A.N., Jordan, A.N.: Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97, 166805 (2006)

    Article  ADS  Google Scholar 

  40. Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81, 040103(R) (2010)

    Article  ADS  Google Scholar 

  41. Lee, J.C., Jeong, Y.C., Kim, Y.S., Kim, Y.H.: Experimental demonstration of decoherence suppression via quantum measurement reversal. Opt. Expr. 19, 16309 (2011)

    Article  ADS  Google Scholar 

  42. Sun, Q., Al-Amri, M., Zubairy, M.S.: Reversing the weak measurement of an arbitrary field with finite photon number. Phys. Rev. A 80, 033838 (2009)

    Article  ADS  Google Scholar 

  43. Sun, Q., Al-Amri, M., Davidovich, L., Zubairy, M.S.: Reversing entanglement change by a weak measurement. Phys. Rev. A 82, 052323 (2010)

    Article  ADS  Google Scholar 

  44. Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117 (2012)

    Article  Google Scholar 

  45. Man, Z., Xia, Y., An, N.B.: Manipulating entanglement of two qubits in a common environment by means of weak measurements and quantum measurement reversals. Phys. Rev. A 86, 012325 (2012)

    Article  ADS  Google Scholar 

  46. Man, Z., Xia, Y., An, N.B.: Enhancing entanglement of two qubits undergoing independent decoherences by local pre- and postmeasurements. Phys. Rev. A 86, 052322 (2012)

    Article  ADS  Google Scholar 

  47. Katz, N., Neeley, M., Ansmann, M., Bialczak, R.C., Hofheinz, M., Lucero, E., OConnell, A., Wang, H., Cleland, A.N., Martinis, J.M., Korotkov, A.N.: Reversal of the weak measurement of a quantum state in a superconducting phase qubit. Phys. Rev. Lett. 101, 200401 (2008)

    Article  ADS  Google Scholar 

  48. Kim, Y.S., Cho, Y.W., Ra, Y.S., Kim, Y.H.: Reversing the weak quantum measurement for a photonic qubit. Opt. Expr. 17, 11978 (2009)

    Article  ADS  Google Scholar 

  49. Pramanik, T., Majumdar, A.S.: Improving the fidelity of teleportation through noisy channels using weak measurement. Phys. Lett. A 377, 3209 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Qiu, L., Tang, G., Yang, X.Q., Wang, A.M.: Enhancing teleportation fidelity by means of weak measurements or reversal. Ann. Phys. 350, 137 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Zhong, W., Sun, Z., Ma, J., Wang, X., Nori, F.: Fisher information under decoherence in Bloch representation. Phys. Rev. A 87, 022337 (2013)

    Article  ADS  Google Scholar 

  53. Man, Z.X., An, N.B., Xia, Y.J.: Improved quantum state transfer via quantum partially collapsing measurements. Ann. Phys. 349, 209 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Bose, S.: Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91, 207901 (2003)

    Article  ADS  Google Scholar 

  55. Christandl, M., Datta, N., Ekert, A., Landahl, A.J.: Perfect state transfer in quantum spin networks. Phys. Rev. Lett. 92, 187902 (2004)

    Article  ADS  Google Scholar 

  56. Nikolopoulos, G.M., Petrosyan, D., Lambropoulos, P.: Coherent electron wavepacket propagation and entanglement in array of coupled quantum dots. Europhys. Lett. 65, 297 (2004)

    Article  ADS  Google Scholar 

  57. Albanese, C., Christandl, M., Datta, N., Ekert, A.: Mirror inversion of quantum states in linear registers. Phys. Rev. Lett. 93, 230502 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  58. Karbach, P., Stolze, J.: Spin chains as perfect quantum state mirrors. Phys. Rev. A 72, 030301 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  59. Kay, A.: Perfect state transfer: beyond nearest-neighbor couplings. Phys. Rev. A 73, 032306 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  60. Shi, T., Li, Y., Song, Z., Sun, C.P.: Quantum-state transfer via the ferromagnetic chain in a spatially modulated field. Phys. Rev. A 71, 032309 (2005)

    Article  ADS  Google Scholar 

  61. Yung, M.-H., Bose, S.: Perfect state transfer, effective gates, and entanglement generation in engineered bosonic and fermionic networks. Phys. Rev. A 71, 032310 (2005)

    Article  ADS  Google Scholar 

  62. Burgarth, D., Bose, S.: Conclusive and arbitrarily perfect quantum-state transfer using parallel spin-chain channels. Phys. Rev. A 71, 052315 (2005)

    Article  ADS  Google Scholar 

  63. Yao, N.Y., Jiang, L., Gorshkov, A.V., Gong, Z.-X., Zhai, A., Duan, L.-M., Lukin, M.D.: Robust quantum state transfer in random unpolarized spin chains. Phys. Rev. Lett. 106, 040505 (2011)

    Article  ADS  Google Scholar 

  64. Yao, N.Y., Gong, Z.-X., Laumann, C.R., Bennett, S.D., Duan, L.-M., Lukin, M.D., Jiang, L., Gorshkov, A.V.: Quantum logic between remote quantum registers. Phys. Rev. A 87, 022306 (2013)

    Article  ADS  Google Scholar 

  65. Braunstein, S.L., Caves, C.M., Milburn, G.J.: Generalized uncertainty relations: theory, examples, and Lorentz invariance. Ann. Phys. 247, 135 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. Giovannetti, V., Fazio, R.: Information-capacity description of spin-chain correlations. Phys. Rev. A 71, 032314 (2005)

    Article  ADS  Google Scholar 

  67. Burgarth, D., Bose, S.: Universal destabilization and slowing of spin-transfer functions by a bath of spins. Phys. Rev. A 73, 062321 (2006)

    Article  ADS  Google Scholar 

  68. Kay, A.: Unifying quantum state transfer and state amplification. Phys. Rev. Lett. 98, 010501 (2007)

    Article  ADS  Google Scholar 

  69. Cai, J.-M., Zhou, Z.-W., Guo, G.-C.: Decoherence effects on the quantum spin channels. Phys. Rev. A 74, 022328 (2006)

    Article  ADS  Google Scholar 

  70. Cucchietti, F.M., Paz, J.P., Zurek, W.H.: Decoherence from spin environments. Phys. Rev. A 72, 052113 (2005)

    Article  ADS  Google Scholar 

  71. Zhang, J., Long, G.L., Zhang, W., Deng, Z., Liu, W., Lu, Z.: Simulation of Heisenberg XY interactions and realization of a perfect state transfer in spin chains using liquid nuclear magnetic resonance. Phys. Rev. A 72, 012331 (2005)

    Article  ADS  Google Scholar 

  72. Childs, A.M., Chuang, I.L.: Universal quantum computation with two-level trapped ions. Phys. Rev. A 63, 012306 (2000)

    Article  ADS  Google Scholar 

  73. Blatt, R., Roos, C.F.: Quantum simulations with trapped ions. Nat. Phys. 8, 277 (2012)

    Article  Google Scholar 

  74. Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998)

    Article  ADS  Google Scholar 

  75. Bloch, I., Dalibard, J., Nascimbene, S.: Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267 (2012)

    Article  Google Scholar 

  76. Du, L.H., Zhou, X., Han, Y.J., Guo, G.C., Zhou, Z.W.: Strongly coupled Josephson-junction array for simulation of frustrated one-dimensional spin models. Phys. Rev. A 86, 032302 (2012)

    Article  ADS  Google Scholar 

  77. Xiao, X., Yao, Y., Xie, Y.-M., Wang, X.-H., Li, Y.-L.: Protecting entanglement from correlated amplitude damping channel using weak measurement and quantum measurement reversal. Quantum Inf. Process. 15, 3881 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. Li, Y.-L., Yao, Y., Xiao, X.: Robust quantum state transfer between two superconducting qubits via partial measurement. Laser Phys. Lett. 13, 125202 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China under Grant No. 61401465 and the Foundation Research Project (Natural Science Foundation) of Jiangsu Province under Grant No. BK20140214.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Qiu, L. & Pan, F. Enhancing quantum coherence and quantum Fisher information by quantum partially collapsing measurements. Quantum Inf Process 16, 109 (2017). https://doi.org/10.1007/s11128-017-1561-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1561-7

Keywords

Navigation