Skip to main content
Log in

Construction of Bell inequalities based on the CHSH structure

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

It is a computationally hard task to find all Bell inequalities for a given number of parties, measurement settings, and measurement outcomes. We investigate the construction of the Clauser-Horne-Shimony-Holt Bell inequalities, based on which we present a set of new Bell inequalities. The maximal violations of the constructed Bell inequalities are analysed, and computable formulas are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bell, J.S.: On the Einstein podolsky rosen paradox. Physics 1, 195 (1964)

    Google Scholar 

  2. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014)

    Article  ADS  Google Scholar 

  3. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Barrett, J., Hardy, L., Kent, A.: No signaling and quantum key distribution. Phys. Rev. Lett. 95, 010503 (2005)

    Article  ADS  Google Scholar 

  5. Acin, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)

    Article  ADS  Google Scholar 

  6. Buhrman, H., Cleve, R., Massar, S., de Wolf, R.: Non-locality and communication complexity. Rev. Mod. Phys. 82, 665 (2010)

    Article  ADS  Google Scholar 

  7. Pironio, S., et al.: Random numbers certified by Bell’s theorem. Nature (London) 464, 1021 (2010)

    Article  ADS  Google Scholar 

  8. Colbeck, R.: Quantum and relativistic protocols for secure multi-party computation. Ph. D. thesis, University of Cambridge (2006)

  9. Werner, R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)

    Article  ADS  Google Scholar 

  10. Barrett, J.: Nonsequential positive-operator-valued measurements on entangled mixed states do not always violate a Bell inequality. Phys. Rev. A 65, 042302 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  11. Acin, A., Gisin, N., Toner, B.: Grothendieck’s constant and local models for noisy entangled quantum states. Phys. Rev. A 73, 062105 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  12. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)

    Article  ADS  Google Scholar 

  13. Mermin, N.D.: Simple unified form for the major no-hidden-variables theorems. Phys. Rev. Lett. 65, 1838 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Belinskii, A.V., Klyshko, D.N.: Interference of light and Bell’s theorem. Phys. Uspekhi 36, 653 (1993)

    Article  ADS  Google Scholar 

  15. Werner, R.F., Wolf, M.M.: All multipartite Bell correlation inequalities for two dichotomic observables per site. Phys. Rev. A 64, 032112 (2001)

    Article  ADS  Google Scholar 

  16. Zukowski, M., Brukner, Č.: Bell’s theorem for general N-qubit states. Phys. Rev. Lett. 88, 210401 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Zukowski, M., Brukner, Č., Laskowski, W., Wieśniak, M.: Do all pure entangled states violate Bell’s inequalities for correlation functions? Phys. Rev. Lett. 88, 210402 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Chen, K., Albeverio, S., Fei, S.M.: Two-setting Bell inequalities for many qubits. Phys. Rev. A 74, 050101(R) (2006)

    Article  ADS  Google Scholar 

  19. Wu, Y.C., Badziag, P., Wieśniak, M., Żukowski, M.: Extending Bell inequalities to more parties. Phys. Rev. A 77, 032105 (2008)

  20. Collins, D., Gisin, N., Linden, N., Massar, S., Popescu, S.: Bell inequalities for arbitrarily high-dimensional systems. Phys. Rev. Lett. 88, 040404 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Vértesi, T., Pironio, S., Brunner, N.: Closing the detection loophole in Bell experiments using qudits. arXiv:0909.3171

  22. Brunner, N., Gisin, N.: Partial list of bipartite Bell inequalities with four binary settings. Phys. Lett. A 372, 3162–3167 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Vértesi, T.: More efficient Bell inequalities for Werner states. Phys. Rev. A 78, 032112 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  24. Collins, D., Gisin, N.: A relevant two qubit Bell inequality inequivalent to the CHSH inequality. J. Phys. A 37, 1775–1787 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Brukner, Č., Żukowski, M., Zeilinger, A.: Quantum communication complexity protocol with two entangled qutrits. Phys. Rev. Lett. 89, 197901 (2002)

    Article  ADS  Google Scholar 

  26. Scarani, V., Gisin, N.: Quantum communication between N partners and Bell’s inequalities. Phys. Rev. Lett. 87, 117901 (2001)

    Article  ADS  Google Scholar 

  27. Acín, A., Gisin, N., Scarani, V.: Security bounds in quantum cryptography using d-level systems. Quantum Inf. Comput. 3, 563–580 (2003)

    MathSciNet  MATH  Google Scholar 

  28. Horodecki, R., Horodecki, P., Horodecki, M.: Violating Bell inequality by mixed spin-\(\frac{1}{2}\) states: necessary and sufficient condition. Phys. Lett. A 200, 340 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Li, M., Zhang, T., Fei, S.M., Li-Jost, X., Jing, N.: Local unitary equivalence of multi-qubit mixed quantum states. Phys. Rev. A 89, 062325 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is finished in the Beijing Computational Science Research Center and is supported by the NSFC Grants Nos. 11105226 and 11275131; the Fundamental Research Funds for the Central Universities Grants Nos. 15CX08011A, 15CX05062A, 16CX02049A and 17CX02033A; the Shandong Provincial Natural Science Foundation No. ZR2016AQ06; Qingdao applied basic research Program No. 15-9-1-103-jch; and a project sponsored by SRF for ROCS, SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Wang, J., Li, M. et al. Construction of Bell inequalities based on the CHSH structure. Quantum Inf Process 16, 105 (2017). https://doi.org/10.1007/s11128-017-1562-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1562-6

Keywords

Navigation