Skip to main content
Log in

Realization of the three-qubit quantum controlled gate based on matching Hermitian generators

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This paper deals with the design of quantum unitary gate by matching the Hermitian generators. A given complicated quantum controlled gate is approximated by perturbing a simple quantum system with a small time-varying potential. The basic idea is to evaluate the generator \(H_\varphi \) of the perturbed system approximately using first-order perturbation theory in the interaction picture. \(H_\varphi \) depends on a modulating signal \(\varphi (t){:}\; 0\le t\le T\) which modulates a known potential V. The generator \(H_\varphi \) of the given gate \(U_\mathrm{g}\) is evaluated using \(H_\mathrm{g}=\iota \log U_g\). The optimal modulating signal \(\varphi (t)\) is chosen so that \(\Vert H_g - H_\varphi \Vert \) is a minimum. The simple quantum system chosen for our simulation is harmonic oscillator with charge perturbed by an electric field that is a constant in space but time varying and is controlled externally. This is used to approximate the controlled unitary gate obtained by perturbing the oscillator with an anharmonic term proportional to \(q^3\). Simulations results show significantly small noise-to-signal ratio. Finally, we discuss how the proposed method is particularly suitable for designing some commonly used unitary gates. Another example was chosen to illustrate this method of gate design is the ion-trap model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms revisited. Proc. R. Soc. Lond. A 454, 339 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  3. DiVincenzo, D.P.: Two-bit gates are universal for quantum computation. Phys. Rev. A 51, 1015 (1995)

    Article  ADS  Google Scholar 

  4. Galindo, A., Martin-Delgado, M.A.: Information and computation: classical and quantum aspects. Rev. Mod. Phys. 74, 347 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Slepoy, A.: Quantum gate decomposition algorithms, Sandia Report, SAND2006-3440, Printed July (2006)

  6. Blaauboer, M., de Visser, R.L.: An analytical decomposition protocol for optimal implementation of two-qubit entangling gates. J. Phys. A 41, 395307 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Altafini, C.: On the generation of sequential unitary gates from continuous time Schrödinger equations driven by external fields. Quant. Inform. Process. 1, 207–224 (2002)

    Article  Google Scholar 

  8. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A. 52, 3457–3467 (1996)

    Article  ADS  Google Scholar 

  9. Zhang, Y., Kauffman, L.H., Ge, M.-L.: Yang–Baxterizations, universal quantum gates and Hamiltonians. Quant. Inform. Process. 4, 159–197 (2005)

    Article  MathSciNet  Google Scholar 

  10. Hirota, O.: Some remarks on a conditional unitary operator. Phys. Lett. A 155(6–7), 343–347 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  11. Lloyd, S.: Almost Any quantum logic gate is universal. Phys. Rev. Lett. 75, 346 (1995)

    Article  ADS  Google Scholar 

  12. Wang, T.J., Wang, C.: Universal hybrid three-qubit quantum gates assisted by a nitrogen-vacancy center coupled with a whispering-gallery-mode microresonator. Phy. Rev. A 90, 052310 (2014)

    Article  ADS  Google Scholar 

  13. Levi, D., Moshinsky, M.: Relations between hyperspherical and harmonic-oscillator many-body matrix elements. Il Nuovo Cimento A 20(1), 107–114 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  14. Feranchuk, I.D., Komarov, L.I., Nichipor, I.V., Ulyanenkov, A.P.: Operator method in the problem of quantum anharmonic oscillator. Ann. Phys. 238(2), 370–440 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Dirac, P.A.M.: The Principles of Quantum Mechanics, 4th edn. Oxford University Press, New York (1958)

    MATH  Google Scholar 

  16. Perelomov, A.M.: Generalized Coherent States and Their Applications, Texts and Monographs in Physics. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  17. Glauber, R.J.: Coherent and incoherent states of radiation field. Phys. Rev. 131, 2766–2788 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  18. Klauder, J.R., Skagerstam, B.: Coherent States. World Scientific, Singapore (1985)

    Book  MATH  Google Scholar 

  19. Gazeau, J.P.: Coherent States in Quantum Physics. Wiley, Berlin (2009)

    Book  Google Scholar 

  20. Combescure, M., Robert, D.: Coherent States and Applications. Mathematical Physics. Springer, New York (2012)

    Book  MATH  Google Scholar 

  21. Gautam, K., Chauhan, G., Rawat, T.K., Parthasarathy, H., Sharma, N.: Realization of quantum gates based on three-dimensional harmonic oscillator in a time-varying electromagnetic field. Quant. Inform. Process. 14(9), 3279–3302 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Sharma, N., Rawat, T.K., Parthasarathy, H., Gautam, K.: Realization of a quantum gate using gravitational search algorithm by perturbing three-dimensional harmonic oscillator with an electromagnetic field. Quant. Inform. Process. 15(6), 2275–2302 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1995)

    MATH  Google Scholar 

  24. Kamran, N., Olver, P.J.: Lie algebras of differential operators and Lie-algebraic potentials. J. Math. Anal. Appl. 145, 342–356 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zimbors, Z., Zeier, R., Schulte-Herbrueggen, T., Burgarth, D.: Symmetry criteria for quantum simulability of effective interactions. Phys. Rev. A 92, 042309 (2015)

    Article  ADS  Google Scholar 

  26. Xu, J.S., Li, C.F.: Quantum integrated circuit: classical characterization. Sci. Bull. 60(1), 141–141 (2015)

    Article  Google Scholar 

  27. Garcia-Ripoll, J.J., Zoller, P., Cirac, J.I.: Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing. Phys. Rev. Lett. 91, 157901 (2003)

    Article  ADS  Google Scholar 

  28. Kumar, P.: Direct implementation of an N-qubit controlled-unitary gate in a single step. Quant. Inform. Process. 12, 1201–1223 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Gautam, K., Rawat, T.K., Parthasarathy, H., Sharma, N.: Realization of commonly used quantum gates using perturbed harmonic oscillator. Quant. Inform. Process. 14(9), 3257–3277 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Rfifi, S., EL Baz, M.: C-NOT three-gates performance by coherent cavity field and its optimized quantum applications. Quant. Inform. Process. 14, 67–81 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Bohm, A., Uncu, H., Komy, S.: A brief survey of the mathematics of quantum physics. Rep. Math. Phys. 64(1–2), 5–32 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Shepherd, D.J.: On the role of Hadamard gates in quantum circuits. Quant. Inform. Process. 5, 161–177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Altafini, C.: Parameter differentiation and quantum state decomposition for time varying Schrödinger equations. Rep. Math. Phys. 52, 381–400 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Glaser, S. J. et al.: Training Schrödingers Cat: Quantum Optimal Control. arXiv: 1508.00442 (2015)

Download references

Acknowledgements

The author is deeply indebted to Professors Harish Parthasarathy and Dr. Tarun Kumar Rawat for offering invaluable comments and suggestions. He is very grateful to Navneet sharama and Varun for their stimulating discussions and invaluable suggestions. The author would like to express special thanks to his wife Archana Singh for her support and understanding right throughout of his research work. The author is also grateful acknowledged to Dr. R. K. Sharma and Prof. Jitender Kumar Pathak for their support and encouraging in Delhi Technical Campus, Greater Noida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumar Gautam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautam, K., Rawat, T.K., Parthasarathy, H. et al. Realization of the three-qubit quantum controlled gate based on matching Hermitian generators. Quantum Inf Process 16, 113 (2017). https://doi.org/10.1007/s11128-017-1564-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1564-4

Keywords

Navigation