Skip to main content
Log in

Enhancing the fidelity of remote state preparation by partial measurements

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Enhancing the fidelity of quantum state transmission in noisy environments is a significant subject in the field of quantum communication. In this paper, improving the fidelity of a deterministic remote state preparation (RSP) protocol under decoherence is investigated with the technique of weak measurement (WM) and weak measurement reversal (WMR). We first construct the quantum circuit of the deterministic remote preparation of a single-qubit state through an EPR state with the assistance of an auxiliary qubit. Then, we analytically derive the average fidelity of the deterministic RSP protocol under the influence of generalized amplitude damping noises acting on the EPR state. Our results show that when only qubit 2 undergoes the decoherence channel, the average fidelity of the RSP protocol subject to generalized amplitude damping noise is the same as that subject to amplitude damping noise. Moreover, we analyze the optimal average fidelity of the above RSP process by introducing WM and WMR. It is found that the application of WM and a subsequent reversal operation could lead to the remarkable improvement of the average fidelity for most values of the decoherence parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  4. Deng, F.G., Long, G.L., Liu, X.S.: A two-step quantum direct communication protocol using Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  5. Gottesman, D., Chuang, I.L.: Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999)

    Article  ADS  Google Scholar 

  6. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wooters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channel. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  8. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2001)

    Article  ADS  Google Scholar 

  9. Bennett, C.H., Divincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wooters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  10. Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90, 057901 (2003)

    Article  ADS  Google Scholar 

  11. Leung, D.W., Shor, P.W.: Oblivious remote state preparation. Phys. Rev. Lett. 90, 127905 (2003)

    Article  ADS  Google Scholar 

  12. Xia, Y., Song, J., Song, H.S.: Remote preparation of the N-particle GHZ state using quantum statistics. Opt. Commun. 277, 219 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  13. Ye, M.Y., Zhang, Y.S., Guo, G.C.: Faithful remote state preparation using finite classical bits and a nonmaximally entangled state. Phys. Rev. A 69, 022310 (2004)

    Article  ADS  Google Scholar 

  14. Liu, J.M., Feng, X.L., Oh, C.H.: Remote preparation of arbitrary two- and three-qubit states. EPL 87, 30006 (2009)

    Article  ADS  Google Scholar 

  15. Luo, M.X., Chen, X.B., Ma, S.Y., Yang, Y.X., Hu, Z.M.: Deterministic remote preparation of an arbitrary W-class state with multiparty. J. Phys. B At. Mol. Opt. Phy. 43, 065501 (2010)

    Article  ADS  Google Scholar 

  16. Xiao, X.Q., Liu, J.M., Zeng, G.H.: Joint remote state preparation of arbitrary two- and three-qubit states. J. Phys. B At. Mol. Opt. Phys. 44, 075501 (2011)

    Article  ADS  Google Scholar 

  17. An, N.B., Bich, C.T., Don, N.V., Kim, J.: Remote state preparation with unit success probability. Adv. Nat. Sci. Nanosci. Nanotechnol. 2, 035009 (2011)

    Article  ADS  Google Scholar 

  18. Chen, Q.Q., Xia, Y., Song, J.: Determinnistic joint remote preparation of an arbitrary three-qubit state via EPR pairs. J. Phys. A Math. Theor. 45, 055303 (2012)

    Article  ADS  MATH  Google Scholar 

  19. Dai, H.Y., Zhang, M., Zhang, Z.R., Xi, Z.R.: Probabilistic remote preparation of a four-particle entangled W state for the general case and for all kinds of the special cases. Commun. Theor. Phys. 60, 313 (2013)

    Article  ADS  MATH  Google Scholar 

  20. Giorgi, G.L.: Quantum discord and remote state preparation. Phys. Rev. A 88, 022315 (2013)

    Article  ADS  Google Scholar 

  21. An, N.B., Bich, C.T., Don, N.V.: Deterministic joint remote state preparation. Phys. Lett. A 375, 3570 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Zhan, Y.B., Ma, P.C.: Deterministic joint remote preparation of arbitrary two- and three-qubit entangled states. Quantum Inf. Process. 12, 997 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Jiang, M., Jiang, F.: Deterministic joint remote preparation of arbitrary multi-qudit states. Phys. Lett. A 377, 2524 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Wang, D., Huang, A.J., Sun, W.Y., Shi, J.D., Ye, L.: Practical single-photon-assisted remote state preparation with non-maximally entanglement. Quantum Inf. Process. 15, 3367–3381 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Wang, D., Hoehn, R.D., Ye, L., Kais, S.: Generalized remote preparation of arbitrary m-qubit entangled states via genuine entanglements. Entropy 17, 1755–1774 (2015)

    Article  ADS  Google Scholar 

  26. Znidaric, M.: Dissipative remote-state preparation in an interacting medium. Phys. Rev. Lett. 116, 030403 (2016)

    Article  ADS  MATH  Google Scholar 

  27. He, Y.H., Lu, Q.C., Liao, Y.M., Qin, X.C., Qin, J.S., Zhou, P.: Bidirectional controlled remote implementation of an arbitrary single qubit unitary operation with EPR and cluster states. Int. J. Theor. Phys. 54, 1726 (2015)

    Article  MATH  Google Scholar 

  28. Liao, Y.M., Zhou, P., Qin, X.C., He, Y.H., Qin, J.S.: Controlled remote preparing of an arbitrary 2-qudit state with two-particle entanglements and positive operator-valued measure. Commun. Theor. Phys. 61, 315–321 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Peters, N.A., Barreiro, J.T., Goggin, M.E., Wei, T.C., Kwiat, P.G.: Remote state preparation: arbitrary remote control of photon polarization. Phys. Rev. Lett. 94, 150502 (2005)

    Article  ADS  Google Scholar 

  30. Rosenfeld, W., Berner, S., Volz, J., Weber, M., Weinfurter, H.: Remote preparation of an atomic quantum memory. Phys. Rev. Lett. 98, 050504 (2007)

    Article  ADS  Google Scholar 

  31. Liu, W.T., Wu, W., Ou, B.Q., Chen, P.X., Li, C.Z., Yuan, J.M.: Experimental remote preparation of arbitrary photon polarization states. Phys. Rev. A 76, 022308 (2007)

    Article  ADS  Google Scholar 

  32. Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Remote preparation of single-photon “hybrid” entangled and vector-polarization states. Phys. Rev. Lett. 105, 030407 (2010)

    Article  ADS  Google Scholar 

  33. Radmark, M., Wiesniak, M., Zukowski, M., Bourennane, M.: Experimental multilocation remote state preparation. Phys. Rev. A 88, 032304 (2013)

    Article  ADS  Google Scholar 

  34. Peng, X.H., Zhu, X.W., Fang, X.M., Feng, M., Liu, M.L., Gao, K.L.: Experimental implementation of remote state preparation by nuclear magnetic resonance. Phys. Lett. A 306, 271 (2003)

    Article  ADS  Google Scholar 

  35. Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  36. Almeida, M.P., de Melo, F., Hor-Meyll, M., Salles, A., Walborn, S.P., Souto Ribeiro, P.H., Davidovich, L.: Environment-induced sudden death of entanglement. Science 316, 579–582 (2007)

    Article  ADS  Google Scholar 

  37. Liang, H.Q., Liu, J.M., Feng, S.S., Chen, J.G.: Remote state preparation via a GHZ-class state in noisy environments. J. Phys. B At. Mol. Opt. Phys. 44, 115506 (2011)

    Article  ADS  Google Scholar 

  38. Sharma, V., Shukla, C., Banerjee, S., Pathak, A.: Controlled bidirectional remote state preparation in noisy environment: a generalized view. Quantum Inf. Process. 14, 3441–3464 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Li, J.F., Liu, J.M., Xu, X.Y.: Deterministic joint remote preparation of an arbitrary two-qubit state in noisy environments. Quantum Inf. Process. 14, 3465–3481 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Falaye, B.J., Sun, G.H., Camacho-Nieto, O., Dong, S.H.: JRSP of three-particle state via three tripartite GHZ class in quantum noisy channels. Int. J. Quantum Inf. 14, 1650034 (2016)

    Article  MATH  Google Scholar 

  41. Xiang, G.Y., Li, J., Yu, B., Guo, G.C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A 72, 012315 (2005)

    Article  ADS  Google Scholar 

  42. Sun, Q.Q., Amri, M.A., Zubairy, M.S.: Reversing the weak measurement of an arbitrary field with finite photon number. Phys. Rev. A 80, 033838 (2009)

    Article  ADS  Google Scholar 

  43. Man, Z.X., Xia, Y.J.: Manipulating entanglement of two qubits in a common environment by means of weak measurements and quantum measurement reversals. Phys. Rev. A 86, 012325 (2012)

    Article  ADS  Google Scholar 

  44. Wang, S.C., Yu, Z.W., Zou, W.J., Wang, X.B.: Protecting quantum states from decoherence of finite temperature using weak measurement. Phys. Rev. A 89, 022318 (2014)

    Article  ADS  Google Scholar 

  45. Zong, X.L., Du, C.Q., Yang, M., Yang, Q., Cao, Z.L.: Protecting remote bipartite entanglement against amplitude damplitude damping by local unitary operations. Phys. Rev. A 90, 062345 (2014)

    Article  ADS  Google Scholar 

  46. Guo, J.L., Wei, J.L.: Dynamics and protection of tripartite quantum correlations in a thermal bath. Ann. Phys. 354, 522–533 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  47. Katz, N., Neeley, M., Ansmann, M., Bialczak, R.C., Hofheinz, M., Lucero, E., O’Connell, A., Wang, H., Cleland, A.N., Martinis, J.M., Korotkov, A.N.: Reversal of the weak measurement of a quantum state in a superconducting phase qubit. Phys. Rev. Lett. 101, 200401 (2008)

    Article  ADS  Google Scholar 

  48. Lee, J.C., Jeong, Y.C., Kim, Y.S., Kim, Y.H.: Experimental demonstration of decoherence suppression via quantum measurement reversal. Opt. Express 19, 16309 (2011)

    Article  ADS  Google Scholar 

  49. Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117 (2012)

    Article  Google Scholar 

  50. Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351 (1988)

    Article  ADS  Google Scholar 

  51. Brańczyk, A.M., Mendonca, P.E.M.F., Gilchrist, A., Doherty, A.C., Bartlett, S.D.: Quantum control of a single qubit. Phys. Rev. A 75, 012329 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  52. Xiao, X., Li, Y.L.: Protecting qutrit-qutrit entanglement by weak measurement and reversal. Eur. Phys. J. D 67, 204 (2013)

    Article  ADS  Google Scholar 

  53. Paraoanu, G.S.: Generalized partial measurements. EPL 93, 64002 (2011)

    Article  ADS  Google Scholar 

  54. Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81, 040103(R) (2010)

    Article  ADS  Google Scholar 

  55. Cheong, Y.W., Lee, S.W.: Balance between information gain and reversibility in weak measurement. Phys. Rev. Lett. 109, 150402 (2012)

    Article  ADS  Google Scholar 

  56. Wang, Q., He, Z., Yao, C.M.: Decoherence suppression of a qutrit system with both spontaneous emission and dephasing by weak measurement and reversal. Phys. Scr. 90, 055102 (2015)

    Article  ADS  Google Scholar 

  57. Doustimotlagh, N., Wang, S.H., You, C.L., Long, G.L.: Enhancement of quantum correlations between two particles under decoherence in finite-temperature environment. EPL 106, 60003 (2014)

    Article  ADS  Google Scholar 

  58. Guo, J.L., Wei, J.L., Qin, W.: Enhancement of quantum correlations in qubit-qutrit system under decoherence of finite temperature. Quantum Inf. Process. 14, 1399–1410 (2015)

    Article  ADS  MATH  Google Scholar 

  59. Shi, J.D., Wang, D., Ma, W.C., Ye, L.: Enhancing quantum correlation in open-system dynamics by reliable quantum operations. Quantum Inf. Process. 14, 3569–3579 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Song, W., Yang, M., Cao, Z.L.: Purifying entanglement of noisy two-qubit states via entanglement swapping. Phys. Rev. A 89, 014303 (2014)

    Article  ADS  Google Scholar 

  61. Shi, J.D., Xu, S., Ma, W.C., Song, X.K., Ye, L.: Purifying two-qubit entanglement in nonidentical decoherence by employing weak measurements. Quantum Inf. Process. 14, 1387–1397 (2015)

    Article  ADS  MATH  Google Scholar 

  62. Liao, X.P., Ding, X.Z., Fang, M.F.: Improving the payoffs of cooperators in three-player cooperative game using weak measurements. Quantum Inf. Process. 14, 4395–4412 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Pramanik, T., Majumdar, A.S.: Improving the fidelity of teleportation through noisy channels using weak measurement. Phys. Lett. A 377, 3209–3215 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. Qiu, L., Tang, G., Yang, X.Q., Wang, A.M.: Enhancing teleportation fidelity by means of weak measurements or reversal. Ann. Phys. 350, 137–145 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Xu, X.M., Cheng, L.Y., Liu, A.P., Su, S.L., Wang, H.F., Zhang, S.: Environment-assisted entanglement restoration and improvement of the fidelity for quantum teleportation. Quantum Inf. Process. 14, 4147–4162 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. Xiao, X., Yao, Y., Zhong, W.J., Li, Y.L., Xie, Y.M.: Enhancing teleportation of quantum Fisher information by partial measurements. Phys. Rev. A 93, 012307 (2016)

    Article  ADS  Google Scholar 

  67. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  68. Oh, S., Lee, S., Lee, H.W.: Fidelity of quantum teleportation through noisy channels. Phys. Rev. A 66, 022316 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  69. Kim, Y.S., Cho, Y.W., Ra, Y.S., Kim, Y.H.: Reversing the weak quantum measurement for a photonic qubit. Opt. Express 17, 11978 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 11174081, the Ministry of Science and Technology of China under Grant No. 2016YFB0501601, and the Natural Science Foundation of Shanghai under Grant No. 16ZR1448300.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Ming Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, RY., Liu, JM. Enhancing the fidelity of remote state preparation by partial measurements. Quantum Inf Process 16, 125 (2017). https://doi.org/10.1007/s11128-017-1575-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1575-1

Keywords

Navigation