Skip to main content
Log in

Coherent control of three-dimensional atom localization based on different coupled mechanisms

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a new scheme for three-dimensional (3D) atom localization in a four-level atomic system based on different coupled mechanisms. Owing to the space-dependent atom–field interaction, the position probability distribution of the atom can be directly determined by measuring the probe absorption and gain spectra. It is found that, based on different coupled mechanisms, the probability of finding the atom in 3D space is increased from 25% to 100%. Our scheme may be helpful in optical microscopy, the atom nano-lithography, and measurement of the center-of-mass wave function of moving atoms, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Quadt, R., Collett, M., Walls, D.F.: Measurement of atomic motion in a standing light field by homodyne detection. Phys. Rev. Lett. 74, 351–354 (1995)

    Article  ADS  Google Scholar 

  2. Kunze, S., Rempe, G., Wilkens, M.: Atomic-position measurement via internal-state encoding. Europhys. Lett. 27, 115 (1994)

    Article  ADS  Google Scholar 

  3. Kunze, S., Dieckmann, K., Rempe, G.: Diffraction of atoms from a measurement induced grating. Phys. Rev. Lett. 78, 2038–2041 (1997)

    Article  ADS  Google Scholar 

  4. Qamar, S., Zhu, S.Y., Zubairy, M.S.: Precision localization of single atom using Autler–Townes microscopy. Opt. Commun. 176, 409–416 (2000)

    Article  ADS  Google Scholar 

  5. Qamar, S., Zhu, S.Y., Zubairy, M.S.: Atom localization via resonance fluorescence. Phys. Rev. A 61, 063806 (2000)

    Article  ADS  Google Scholar 

  6. Sahrai, M., Tajalli, H., Kapale, K.T., Zubairy, M.S.: Subwavelength atom localization via amplitude and phase control of the absorption spectrum. Phys. Rev. A 72, 013820 (2005)

    Article  ADS  Google Scholar 

  7. Kapale, K.T., Zubairy, M.S.: Subwavelength atom localization via amplitude and phase control of the absorption spectrum. II. Phys. Rev. A 73, 023813 (2006)

    Article  ADS  Google Scholar 

  8. Proite, N.A., Simmons, Z.J., Yavuz, D.D.: Observation of atomic localization using electromagnetically induced transparency. Phys. Rev. A 83, 041803(R) (2011)

    Article  ADS  Google Scholar 

  9. Paspalakis, E., Knight, P.L.: Localizing an atom via quantum interference. Phys. Rev. A 63, 065802 (2001)

    Article  ADS  Google Scholar 

  10. Liu, C.P., Gong, S.Q., Cheng, D.C., Fan, X.J., Xu, Z.Z.: Atom localization via interference of dark resonances. Phys. Rev. A 73, 025801 (2006)

    Article  ADS  Google Scholar 

  11. Xu, J., Hu, X.M.: Sub-half-wavelength atom localization via phase control of a pair of bichromatic fields. Phys. Rev. A 76, 013830 (2007)

    Article  ADS  Google Scholar 

  12. Qamar, S., Mehmood, A., Qamar, S.: Subwavelength atom localization via coherent manipulation of the Raman gain process. Phys. Rev. A 79, 033848 (2009)

    Article  ADS  Google Scholar 

  13. Ivanov, V., Rozhdestvensky, Y.: Two-dimensional atom localization in a four-level tripod system in laser field. Phys. Rev. A 81, 033809 (2010)

    Article  ADS  Google Scholar 

  14. Li, J.H., Yu, R., Liu, M., Ding, C.L., Yang, X.X.: Efficient two-dimensional atom localization via phase-sensitive absorption spectrum in a radio-frequency-driven four-level atomic system. Phys. Lett. A 375, 3978–3985 (2011)

    Article  ADS  Google Scholar 

  15. Ding, C.L., Li, J.H., Yang, X.X., Zhang, D., Xiong, H.: Proposal for efficient two-dimensional atom localization using probe absorption in a microwave-driven four-level atomic system. Phys. Rev. A 84, 043840 (2011)

    Article  ADS  Google Scholar 

  16. Wan, R.G., Zhang, T.Y., Kou, J.: Two-dimensional sub-half-wavelength atom localization via phase control of absorption and gain. Phys. Rev. A 87, 043816 (2013)

    Article  ADS  Google Scholar 

  17. Rahmatullah, Qamar, S.: Two-dimensional atom localization via probe-absorption spectrum. Phys. Rev. A 88, 013846 (2013)

    Article  ADS  Google Scholar 

  18. Ding, C.L., Li, J.H., Zhan, Z.M., Yang, X.X.: Two-dimensional atom localization via spontaneous emission in a coherently driven five-level M-type atomic system. Phys. Rev. A 83, 063834 (2011)

    Article  ADS  Google Scholar 

  19. Wan, R.G., Kou, J., Jiang, L., Jiang, Y., Gao, J.Y.: Two-dimensional atom localization via interacting double-dark resonances. J. Opt. Soc. Am. B 28(4), 622–628 (2011)

    Article  ADS  Google Scholar 

  20. Ivanov, V.S., Rozhdestvensky, Y.V., Suominen, K.: Three-dimensional atom localization by laser fields in a four-level tripod system. Phys. Rev. A 90, 063802 (2014)

    Article  ADS  Google Scholar 

  21. Zhu, Z., Yang, W.-X., Xie, X.-T., Liu, S., Liu, S., Lee, R.-K.: Three-dimensional atom localization from spatial interference in a double two-level atomic system. Phys. Rev. A 94, 013826 (2016)

    Article  ADS  Google Scholar 

  22. Hamedi, H.R., Juzeliūnas, G.: Phase-sensitive atom localization for closed-loop quantum systems. Phys. Rev. A 94, 013842 (2016)

    Article  ADS  Google Scholar 

  23. Meystre, P., Sargent, M.: Elements of Quantum Optics. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  24. Wu, Y., Wen, L.L., Zhu, Y.F.: Efficient hyper-Raman scattering in resonant coherent media. Opt. Lett. 28, 631–633 (2003)

    Article  ADS  Google Scholar 

  25. Wu, Y., Saldana, J., Zhu, Y.F.: Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency. Phys. Rev. A 67, 013811 (2003)

    Article  ADS  Google Scholar 

  26. Phillips, W.D.: Nobel lecture: laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 70, 721–741 (1998)

    Article  ADS  Google Scholar 

  27. Johnson, K.S., Thywissen, J.H., Dekker, N.H., Berggren, K.K., Chu, A.P., Younkin, R., Prentiss, M.: Localization of metastable atom beams with optical standing waves: nanolithography at the Heisenberg limit. Science 280, 1583–1586 (1998)

    Article  ADS  Google Scholar 

  28. Pitaevskii, Lev, Stringari, Sandro: Bose–Einstein Condensation and Superfluidity. Oxford University Press, New York (2016)

    Book  MATH  Google Scholar 

  29. Zhang, P., Guo, Y., Li, Z., Zhang, Y., Zhang, Y., Du, J., Li, G., Wang, J., Zhang, T.: Elimination of the degenerate trajectory of a single atom strongly coupled to a tilted \(\text{ TEM }_{10}\) cavity mode. Phys. Rev. A 83, 031804 (2011)

    Article  ADS  Google Scholar 

  30. Du, J., Li, W., Wen, R., Li, G., Zhang, T.: Precision measurement of single atoms strongly coupled to the higher order transverse modes of a high-finesse optical cavity. Appl. Phys. Lett. 103, 083117 (2013)

  31. Evers, J., Qamar, S., Zubairy, M.S.: Atom localization and center-of-mass wave-function determination via multiple simultaneous quadrature measurements. Phys. Rev. A 75, 053809 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11674002 and 11205001) and Doctoral Scientific Research Fund of Anhui University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiping Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Song, F., Chen, J. et al. Coherent control of three-dimensional atom localization based on different coupled mechanisms. Quantum Inf Process 16, 129 (2017). https://doi.org/10.1007/s11128-017-1581-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1581-3

Keywords

Navigation