Skip to main content
Log in

Quantum private comparison employing single-photon interference

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

As a typical quantum cryptographic task between distrustful participants, quantum private comparison (QPC) has attracted a lot of attention in recent years. Here we propose two QPC protocols employing single-photon interference, a typical and interesting technology for quantum communications. Compared with the previous QPC protocols employing normal single states or entangled states, the proposed protocols achieve lower communication complexity utilizing the characteristics of single-photon interference. And we also proved the security of the proposed protocols in theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Single-photon interference is a typical and important technology of quantum communication. Utilizing such technology, people designed many interesting protocols, for example, the first QKD protocol by orthogonal state encoding [6], the counterfactual QKD protocol where the secret is generated when no photons have been transmitted from one participant to the other [7], the QKD protocol without monitoring signal disturbance [8], and so on [24, 52].

References

  1. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring, In: Proceedings of 35th Annual Symposium on the Foundations of Computer Science, Santa Fe, New Mexico, pp. 124–134 (1994)

  2. “Quantum Chaos: After a Failed Speed Test, the D-Wave Debate Continues”. Scientific American. 2014-06-19

  3. Gisin, N., Ribordy, G.G., Tittle, W.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  Google Scholar 

  4. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal, Bangalore, pp. 175–179 (1984)

  5. Ekert, A.K.: Quantum cryptography based on Bell theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Goldenberg, L., Vaidman, L.: Quantum cryptography based on orthogonal states. Phys. Rev. Lett. 75, 1239–1243 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Noh, T.-G.: Counterfactual quantum cryptography. Phys. Rev. Lett. 103, 230501 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  8. Sasaki, T., Yamamoto, Y., Koashi, M.: Practical quantumkey distribution protocol without monitoring signal disturbance. Nature 509, 475–479 (2014)

    Article  ADS  Google Scholar 

  9. Liu, B., Gao, F., Qin, S.-J., et al.: Choice of measurement as the secret. Phys. Rev. A 89, 042318 (2014)

    Article  ADS  Google Scholar 

  10. Long, G.-L., Liu, X.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  11. Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)

    Article  ADS  Google Scholar 

  12. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  13. Gao, F., Qin, S.-J., Wen, Q.-Y., Zhu, F.-C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt. Commun. 283, 192 (2010)

    Article  ADS  Google Scholar 

  14. Huang, W., Wen, Q.-Y., Jia, H.-Y., Qin, S.-J., Gao, F.: Fault tolerant quantum secure direct communication with quantum encryption against collective noise. Chin. Phys. B 21(10), 100308 (2012)

    Article  ADS  Google Scholar 

  15. Malaney, R.A.: Location-dependent communications using quantum entanglement. Phys. Rev. A 81, 042319 (2010)

    Article  ADS  Google Scholar 

  16. Buhrman, H., et al.: Position-based quantum cryptography: impossibility and constructions. In: Rogaway P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 429–446. Springer, Heidelberg (2011). Full version is arXiv:1009.2490v4 [quant-ph]

  17. Brassard, G.: The conundrum of secure positioning. Nature 479, 307 (2011)

    Article  ADS  Google Scholar 

  18. Gao, F., Liu, B., Wen, Q.-Y.: Quantum position verification in bounded-attack-frequency model. Sci. China Phys. Mech. Astron. 59, 110331 (2016)

    Google Scholar 

  19. Nayak, A.: Bit-commitment-based quantum coin flipping. Phys. Rev. A 67, 012304–012314 (2003)

    Article  ADS  Google Scholar 

  20. Barrett, J., Massar, S.: Quantum coin tossing and bit-string generation in the presence of noise. Phys. Rev. A 69(2), 577–580 (2004)

    Article  Google Scholar 

  21. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum private queries. Phys. Rev. Lett. 100, 230502 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Jakobi, M., Simon, C., Gisin, N., et al.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83, 022301 (2011)

    Article  ADS  Google Scholar 

  23. Gao, F., Liu, B., Huang, W., Wen, Q.Y.: Postprocessing of the oblivious key in quantum private query. IEEE J. Sel. Top. Quantum Electron. 21(3), 6600111 (2015)

    Google Scholar 

  24. Liu, B., Gao, F., Huang, W., et al.: QKD-based quantum private query without a failure probability. Sci. China Phys. Mech. Astron. 58, 100301 (2015)

    Article  Google Scholar 

  25. Liu, B., Gao, F., Huang, W., Li, D., Wen, Q.-Y.: Controlling the key by choosing the detection bits in quantum cryptographic protocols. Sci. China Inf. Sci. 58(11), 112110 (2015)

    MathSciNet  Google Scholar 

  26. Yang, Y.-G., Wen, Q.-Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A: Math. Theor. 42, 055305 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Yang, Y.-G., Cao, W.-F., Wen, Q.Y.: Secure quantum private comparison. Phsy. Scr. 80, 065002 (2009)

    Article  ADS  MATH  Google Scholar 

  28. Chen, X.-B., Xu, G., Niu, X.-X., Wen, Q.-Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1161–1165 (2009)

    Google Scholar 

  29. Liu, W., Wang, Y.-B., Jiang, Z.-T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. 284, 3160–3163 (2011)

    Article  ADS  Google Scholar 

  30. Tseng, H.-Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11(2), 373–384 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Chang, C.-H., Hwang, T., Gope, P.: An efficient quantum private comparison of equality over collective-noise channels. Int. J. Theor. Phys. 55(4), 2125-38 (2016)

    Article  MATH  Google Scholar 

  32. Chen, X.-B., Dou, Z., Xu, G., Wang, C., Yang, Y.X.: A class of protocols for quantum private comparison based on the symmetry of states. Quantum Inf. Process. 13(1), 85–100 (2014)

    Article  ADS  MATH  Google Scholar 

  33. Chen, X.-B., Su, Y., Niu, X.-X., Yang, Y.-X.: Efficient and feasible quantum private comparison of equality against the collective amplitude damping noise. Quantum Inf. Process. 13(1), 101–112 (2014)

    Article  ADS  MATH  Google Scholar 

  34. Guo, F.-Z., Gao, F., Qin, S.-J., Zhang, J., Wen, X.-Y.: Quantum private comparison protocol based on entanglement swapping of d-level Bell states. Quantum Inf. Process. 12(8), 2793–2802 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. He, G.P.: Comment on quantum private comparison of equality protocol without a third party. Quantum Inf. Process. 14(6), 2301–2305 (2015)

    Article  ADS  Google Scholar 

  36. Huang, S.L., Hwang, T., Gope, P.: Multi-party quantum private comparison with an almost-dishonest third party. Quantum Inf. Process. 14(11), 4225–4235 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Huang, S.L., Hwang, T., Gope, P.: Multi-party quantum private comparison protocol with an almost-dishonest third party using GHZ states. Int. J. Theor. Phys. 55(6), 2969–2976 (2016)

    Article  MATH  Google Scholar 

  38. Huang, W., Wen, Q.-Y., Liu, B., Gao, F., Sun, Y.: Robust and efficient quantum private comparison of equality with collective detection over collective-noise channels. Sci. China Phys. Mech. Astron. 56(9), 1670–1678 (2013)

    Article  ADS  Google Scholar 

  39. Ji, S., F., Wang, W.J., Liu, Yuan, X.M.: Twice-Hadamard-CNOT attack on Li et al.’s fault-tolerant quantum private comparison and the improved scheme. Front. Phys. 10(2), 192–197 (2015)

    Article  Google Scholar 

  40. Ji, Z.X., Ye, T.Y.: Quantum private comparison of equal information based on highly entangled six-qubit genuine state. Commun. Theor. Phys. 65(6), 711–715 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Li, J., Jia, L., Zhou, H.F., Zhang, T.T.: Secure quantum private comparison protocol based on the entanglement swapping between three-particle W-class state and bell state. Int. J. Theor. Phys. 55(3), 1710–1718 (2016)

    Article  MATH  Google Scholar 

  42. Li, Y.B., Ma, Y.J., Xu, S.W., Huang, W., Zhang, Y.S.: Quantum private comparison based on phase encoding of single photons. Int. J. Theor. Phys. 53(9), 3191–3200 (2014)

    Article  MATH  Google Scholar 

  43. Li, Y.B., Qin, S.J., Yuan, Z., Huang, W., Sun, Y.: Quantum private comparison against decoherence noise. Quantum Inf. Process. 12(6), 2191–2205 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Li, Y.B., Wang, T.Y., Chen, H.Y., Li, M.D., Yang, Y.T.: Fault-tolerate quantum private comparison based on GHZ states and ECC. Int. J. Theor. Phys. 52(8), 2818–2825 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lin, J.S., Yang, C.W., Hwang, T.: Quantum private comparison of equality protocol without a third party. Quantum Inf. Process. 13(2), 239–247 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  46. Lin, S., Guo, G.D., Liu, X.F.: Quantum private comparison of equality with \(\chi \)-type entangled states. Int. J. Theor. Phys. 52(11), 4185–4194 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. Lin, S., Sun, Y., Liu, X.F., Yao, Z.Q.: Quantum private comparison protocol with d-dimensional Bell states. Quantum Inf. Process. 12(1), 559–568 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Liu, W., Wang, Y.B., Wang, X.M.: Multi-party quantum private comparison protocol using d-dimensional basis states without entanglement swapping. Int. J. Theor. Phys. 53(4), 1085–1091 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Liu, B., Gao, F., Jia, H.Y., Huang, W., Zhang, W.W., Wen, Q.Y.: Efficient quantum private comparison employing single photons and collective detection. Quantum Inf. Process. 12(2), 887–897 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. He, G.P.: Simple quantum protocols for the millionaire problem with a semi-honest third party. Int J Quantum Inf. 11(02), 289–300 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  51. Yao, A.C.: Protocols for secure computations. In: Proceedings of 23rd IEEE Symposium on Foundations of Computer Science (FOCS 82), Washington, DC (1982)

  52. Xu, S.W., Sun, Y., Lin, S.: Quantum private query based on single-photon interference. Quantum Inf. Process. 15(8), 3301–3310 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Postdoctoral Program for Innovative Talents under Grant No. BX201600199, China Postdoctoral Science Foundation funded project under Grant No. 2017M612912, the Fundamental Research Funds for the Central Universities under Grant Nos. 0216005202066, Sichuan Youth Science and Technology Foundation under Grant No. 2017JQ0045, National Natural Science Foundation of China under Grant Nos. 61572089, 61309029, 61502200, the Natural Science Foundation of Guangdong Province under Grant No. 2014A030310245.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Xiao, D., Huang, W. et al. Quantum private comparison employing single-photon interference. Quantum Inf Process 16, 180 (2017). https://doi.org/10.1007/s11128-017-1630-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1630-y

Keywords

Navigation