Skip to main content
Log in

Dynamics of quantum correlation and coherence in de Sitter universe

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this article, we investigate the dynamics of quantum correlation and coherence for two atoms interacting with massless scalar field in the background de Sitter spacetime. We firstly analyze the solving process of master equation that describes the system evolution with initial Werner state. Then, we discuss the degradation, generation, revival and enhancement of quantum correlation and coherence for three cases of different initial states: zero correlation state, nonzero correlation separable state and maximally entangled state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)

    Article  ADS  Google Scholar 

  2. Niset, J., Cerf, N.J.: Multipartite nonlocality without entanglement in many dimensions. Phys. Rev. A 74, 052103 (2006)

    Article  ADS  Google Scholar 

  3. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  4. Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008)

    Article  ADS  Google Scholar 

  5. Céleri, L.C., Maziero, J., Serra, R.M.: Theoretical and experimental aspects of quantum discord and related measures. Int. J. Quantum Inf. 9, 1837 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Pirandola, S.: Quantum discord as a resource for quantum cryptography. Sci. Rep. 4, 6956 (2014)

    Article  ADS  Google Scholar 

  7. Girolami, D., Tufarelli, T., Adesso, G.: Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013)

    Article  ADS  Google Scholar 

  8. Gu, M., Chrzanowski, H.M., Assad, S.M., Symul, T., Modi, K., Ralph, T.C., Vedral, V., Koy, P.: Lam: observing the operational significance of discord consumption. Nat. Phys. 8, 671 (2012)

    Article  Google Scholar 

  9. Dakić, B., et al.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666 (2012)

    Article  Google Scholar 

  10. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  11. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A: Math. Gen. 34, 6899 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Dakić, B., Vedral, V., Brukner, Č.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  MATH  Google Scholar 

  13. Luo, S., Fu, S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Huang, Z.M., Qiu, D.W.: Geometric quantum discord under noisy environment. Quantum Inf. Process. 15, 1979 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Paula, F.M., de Oliveira, T.R., Sarandy, M.S.: Geometric quantum discord through the Schatten 1-norm. Phys. Rev. A 87, 064101 (2013)

    Article  ADS  Google Scholar 

  16. Ciccarello, F., Tufarelli, T., Giovannetti, V.: Toward computability of trace distance discord. New J. Phys. 16, 013038 (2014)

    Article  ADS  Google Scholar 

  17. Huang, Z.M., Qiu, D.W., Mateus, P.: Geometry and dynamics of one-norm geometric quantum discord. Quantum Inf. Process. 15, 301 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Luo, S., Fu, S.: Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011)

    Article  ADS  MATH  Google Scholar 

  19. Bera, M.N.: Role of quantum correlation in metrology beyond standard quantum limit. arXiv:1405.5357 (2014)

  20. Girolami, D., Souza, A.M., Giovannetti, V., Tufarelli, T., Filgueiras, J.G., Sarthour, R.S., Soares-Pinto, D.O., Oliveira, I.S., Adesso, G.: Quantum discord determines the interferometric power of quantum states. Phys. Rev. Lett. 112, 210401 (2014)

    Article  ADS  Google Scholar 

  21. Dhar, H.S., Bera, M.N., Adesso, G.: Characterizing non-Markovianity via quantum interferometric power. Phys. Rev. A 91, 032115 (2015)

    Article  ADS  Google Scholar 

  22. Brodutch, A., Modi, K.: Criteria for measures of quantum correlations. Quantum Inf. Comput. 12, 0721 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Nakano, T., Piani, M., Adesso, G.: Negativity of quantumness and its interpretations. Phys. Rev. A 88, 012117 (2013)

    Article  ADS  Google Scholar 

  24. Streltsov, A., Adesso, G., Plenio, M.B.: Quantum coherence as a resource. arXiv:1609.02439 (2016)

  25. Scully, M.O.: Enhancement of the index of refraction via quantum coherence. Phys. Rev. Lett. 67, 1855 (1991)

    Article  ADS  Google Scholar 

  26. Mandel, L., Wolf, E.: Optical coherence and quantum optics. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  27. Åberg, J.: Catalytic coherence. Phys. Rev. Lett. 113, 150402 (2014)

    Article  Google Scholar 

  28. Narasimhachar, V., Gour, G.: Low-temperature thermodynamics with quantum coherence. Nat. Commun. 6, 7689 (2015)

    Article  ADS  Google Scholar 

  29. Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015)

    Article  ADS  Google Scholar 

  30. Deveaud-Pl\(\acute{e}\)dran, B., Quattropani, A., Schwendimann, P.(eds.): Quantum coherence in solid state systems. In: proceedings of the international school of physics enrico fermi, vol. 171, IOS Press, Amsterdam, ISBN: 978-1-60750-039-1 (2009)

  31. Li, C.-M., Lambert, N., Chen, Y.-N., Chen, G.-Y., Nori, F.: Witnessing quantum coherence: from solid-state to biological systems. Sci. Rep. 2, 885 (2012)

    Article  Google Scholar 

  32. Situ, H.Z., Hu, X.Y.: Dynamics of relative entropy of coherence under Markovian channels. Quantum Inf. Process. 15, 4649 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Huang, Z.M., Situ, H.Z.: Optimal protection of quantum coherence in noisy environment. Int. J. Theor. Phys. 56, 503 (2017)

    Article  MATH  Google Scholar 

  34. Huang, Z.M., Situ, H.Z.: Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar feld. Ann. Phys. 377, 484 (2017)

    Article  ADS  MATH  Google Scholar 

  35. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  36. Rana, S., Parashar, P., Lewenstein, M.: Trace-distance measure of coherence. Phys. Rev. A 93, 012110 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  37. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  38. Yao, Y., Xiao, X., Ge, L., Sun, C.P.: Quantum coherence in multipartite systems. Phys. Rev. A 92, 022112 (2015)

    Article  ADS  Google Scholar 

  39. Chitambar, E., Hsieh M.-H.: Relating the resource theories of entanglement and quantum coherence. arXiv:1509.07458 (2015)

  40. Ma, J.J., Yadin, B., Girolami, D., Vedral, V., Gu, M.: Converting coherence to quantum correlations. Phys. Rev. Lett. 116, 160407 (2016)

    Article  ADS  Google Scholar 

  41. Xi, Z., Li, Y., Fan, H.: Quantum coherence and correlations in quantum system. Sci. Rep. 5, 10922 (2015)

    Article  ADS  Google Scholar 

  42. Hu, X., Fan, H.: Coherence extraction from measurement-induced disturbance. arXiv:508.01978 (2015)

  43. Hu, J.W., Yu, H.W.: Entanglement dynamics for uniformly accelerated two-level atoms. Phys. Rev. A 91, 012327 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  44. Yang, Y.Q., Hu, J.W., Yu, H.W.: Entanglement dynamics for uniformly accelerated two-level atoms coupled with electromagnetic vacuum fluctuations. Phys. Rev. A 94, 032337 (2016)

    Article  ADS  Google Scholar 

  45. Liu, X.B., Tian, Z.H., Wang, J.C., Jing, J.L.: Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field. Ann. Phys. 366, 102 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Tian, Z.H., Jing, J.L.: Dynamics and quantum entanglement of two-level atoms in de Sitter spacetime. Ann. Phys. 350, 1 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Tian, Z., Wang, J., Jing, J., Dragan, A.: Detecting the curvature of de Sitter universe with two entangled atoms. Sci. Rep. 6, 35222 (2016)

    Article  ADS  Google Scholar 

  48. Johannes, H., et al.: Cosmic bell test: measurement settings from milky way stars. Phys. Rev. Lett. 118, 060401 (2017)

    Article  Google Scholar 

  49. Yao, Y., et al.: Bell violation versus geometric measure of quantum discord and their dynamical behavior. Eur. Phys. J. D 66, 295 (2012)

    Article  ADS  Google Scholar 

  50. Ma, W., Xu, S., Shi, J., Ye, L.: Quantum correlation versus bell-inequality violation under the amplitude damping channel. Phys. Lett. A 379, 43 (2015)

    MATH  Google Scholar 

  51. Sharma, K., Das, T., Sen, A., Sen, U.: Distribution of Bell-inequality violation versus multiparty-quantum-correlation measures. Phys. Rev. A 93, 062344 (2016)

    Article  ADS  Google Scholar 

  52. Gorini, V., Kossakowski, A., Surdarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  53. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Breuer, H.-P., Petruccione, F.: The theory of open quantum systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  55. Birrell, N.D., Davies, P.C.W.: Quantum fields theory in curved space. Cambridge University Press, Cambridge (1982)

    Book  MATH  Google Scholar 

  56. Allen, B.: Vacuum states in de Sitter space. Phys. Rev. D 32, 3136 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  57. Polarski, D.: On the hawking effect in de Sitter space. Class. Quant. Grav. 6, 717 (1989)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science Foundation for Young Teachers of Wuyi University (Grant No. 2015zk01), the Doctoral Research Foundation of Wuyi University (2017BS07), the Doctoral Research Foundation of Wuyi University (2016BS02), the Natural Science Foundation of Qiannan Normal College for Nationalities joint Guizhou Province of China (Grant No. Qian-Ke-He LH Zi[2015]7719), and the Natural Science Foundation of Central Government Special Fund for Universities of West China (Grant No. 2014ZCSX17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiming Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z. Dynamics of quantum correlation and coherence in de Sitter universe. Quantum Inf Process 16, 207 (2017). https://doi.org/10.1007/s11128-017-1659-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1659-y

Keywords

Navigation