Skip to main content
Log in

Parameter optimization in biased decoy-state quantum key distribution with both source errors and statistical fluctuations

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The decoy-state method has been widely used in commercial quantum key distribution (QKD) systems. In view of the practical decoy-state QKD with both source errors and statistical fluctuations, we propose a universal model of full parameter optimization in biased decoy-state QKD with phase-randomized sources. Besides, we adopt this model to carry out simulations of two widely used sources: weak coherent source (WCS) and heralded single-photon source (HSPS). Results show that full parameter optimization can significantly improve not only the secure transmission distance but also the final key generation rate. And when taking source errors and statistical fluctuations into account, the performance of decoy-state QKD using HSPS suffered less than that of decoy-state QKD using WCS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing. IEEE, New York, pp. 175–179 (1984)

  2. Lo, H.-K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050 (1999)

    Article  ADS  Google Scholar 

  3. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)

    Article  ADS  Google Scholar 

  4. Mayers, D.: Unconditional security in quantum cryptography. J. ACM 48, 351 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lo, H.-K., Chau, H.F., Ardehali, M.: Efficient quantum key distribution scheme and a proof of its unconditional security. J. Cryptol. 18, 133–165 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330 (2000)

    Article  ADS  MATH  Google Scholar 

  7. Lütkenhaus, N.: Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61, 052304 (2000)

    Article  ADS  Google Scholar 

  8. Lütkenhaus, N., Jahma, M.: Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack. N. J. Phys. 4, 44.1 (2002)

    Article  Google Scholar 

  9. Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)

    Article  ADS  Google Scholar 

  10. Wang, X.-B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)

    Article  ADS  Google Scholar 

  11. Lo, H.-K., Ma, X.-F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    Article  ADS  Google Scholar 

  12. Wang, Q., Wang, X.-B., Guo, G.-C.: Practical decoy-state method in quantum key distribution with a heralded single-photon source. Phys. Rev. A 75, 012312 (2007)

    Article  ADS  Google Scholar 

  13. Wang, Q., Wang, X.-B.: Improved practical decoy state method in quantum key distribution with parametric down-conversion source. Europhys. Lett. 79, 40001 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  14. Wang, Q., Chen, W., Xavier, et al.: Experimental decoy-state quantum key distribution with a sub-Poissionian heralded single-photon source. Phys. Rev. Lett. 100, 090501 (2008)

    Article  ADS  Google Scholar 

  15. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  16. Zhou, Y.-H., Yu, Z.-W., Wang, X.-B.: Tightened estimation can improve the key rate of measurement-device-independent quantum key distribution by more than 100. Phys. Rev. A 89, 052325 (2014)

    Article  ADS  Google Scholar 

  17. Wang, X.B.: Measurement-device-independent quantum key distribution. Phys. Rev. A 87, 012320 (2013)

    Article  ADS  Google Scholar 

  18. Tamaki, K., Lo, H.-K., Fung, C.-H.F., Qi, B.: Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw. Phys. Rev. A 85, 042307 (2012)

    Article  ADS  Google Scholar 

  19. Ma, X., Razavi, M.: Alternative schemes for measurement-device-independent quantum key distribution. Phys. Rev. A 86, 062319 (2012)

    Article  ADS  Google Scholar 

  20. Wang, Q., Wang, X.-B.: An efficient implementation of the decoy-state measurement-device-independent quantum key distribution with heralded single-photon sources. Phys. Rev. A 88, 052332 (2013)

    Article  ADS  Google Scholar 

  21. Wang, Q., Wang, X.-B.: Simulating of the measurement-device independent quantum key distribution with phase randomized general sources. Sci. Rep. 4, 04612 (2014)

    Article  ADS  Google Scholar 

  22. Zhu, J.-R., Zhu, F., Zhou, X.-Y., Wang, Q.: The enhanced measurement-device-independent quantum key distribution with two-intensity decoy states. Quantum Inf. Process. 15, 3799–3813 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Wang, D., Li, M., Zhu, F., Yin, Z.-Q., Chen, W., Han, Z.-F., Guo, G.-C., Wang, Q.: Quantum key distribution with the single-photon-added coherent source. Phys. Rev. A 90, 062315 (2014)

    Article  ADS  Google Scholar 

  24. Wang, X.-B., Yang, L., Peng, C.-Z., Pan, J.-W.: Decoy-state quantum key distribution with both source errors and statistical fluctuations. N. J. Phys. 11, 075006 (2009)

    Article  Google Scholar 

  25. Ma, X., Fung, C.-H.F., Razavi, M.: Statistical fluctuation analysis for measurement-device-independent quantum key distribution. Phys. Rev. A 86, 052305 (2012)

    Article  ADS  Google Scholar 

  26. Yu, Z.W., Zhou, Y.H., Wang, X.B.: Statistical fluctuation analysis for measurement-device-independent quantum key distribution with three-intensity decoy-state method. Phys. Rev. A 91, 032318 (2015)

    Article  ADS  Google Scholar 

  27. Fung, C.-H.F., Ma, X., Chau, H.F.: Practical issues in quantum-key-distribution postprocessing. Phys. Rev. A 81, 012318 (2010)

    Article  ADS  Google Scholar 

  28. Gottesman, D., Lo, H.-K., Lütkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4, 325 (2004)

    MathSciNet  MATH  Google Scholar 

  29. Xu, F., Xu, H., Lo, H.-K.: Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 89, 052333 (2014)

    Article  ADS  Google Scholar 

  30. Wang, Q., Zhang, C.-H., Wang, X.-B.: Scheme for realizing passive quantum key distribution with heralded single-photon sources. Phys. Rev. A 93, 032312 (2016)

    Article  ADS  Google Scholar 

  31. Wang, S., Chen, W., Yin, Z.-Q., Li, H.-W., He, D.-Y., Li, Y.-H., Zhou, Z., Song, X.-T., Li, F.-Y., Wang, D., Chen, H., Han, Y.-G., Huang, J.-Z., Guo, J.-F., Hao, P.-L., Li, M., Zhang, C.-M., Liu, D., Liang, W.-Y., Miao, C.-H., Wu, P., Guo, G.-C., Han, Z.-F.: Field and long-term demonstration of a wide area quantum key distribution network. Opt. Express 22, 21739 (2014)

    Article  ADS  Google Scholar 

  32. Wang, Y., Bao, W.-S., Zhou, C., Jiang, M.-S., Li, H.-W.: Tight finite-key analysis of a practical decoy-state quantum key distribution with unstable sources. Phys. Rev. A 94, 032335 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the National Key Research and Development Program of China through Grant No. 2017YFA0304100, the National Natural Science Foundation of China through Grants Nos. 61475197 and 61590932, the Natural Science Foundation of the Jiangsu Higher Education Institutions through Grant No. 15KJA120002, the Outstanding Youth Project of Jiangsu Province through Grant No. BK20150039, the Priority Academic Program Development of Jiangsu Higher Education Institutions through Grant No. YX002001, and the NUPTSF through Grant No. NY217006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, JR., Li, J., Zhang, CM. et al. Parameter optimization in biased decoy-state quantum key distribution with both source errors and statistical fluctuations. Quantum Inf Process 16, 238 (2017). https://doi.org/10.1007/s11128-017-1687-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1687-7

Keywords

Navigation