Skip to main content
Log in

Coherence of one-dimensional quantum walk on cycles

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum coherence plays a central role in quantum mechanics and provides essential power for quantum information processing. In this paper, we study the dynamics of the \(l_1\) norm coherence in one-dimensional quantum walk on cycles for two initial states. For the first initial state, the walker starts from a single position. The coherence increases with the number of steps at the beginning and then fluctuates over time after approaching to saturation. The coherence with odd number of sites is much larger than that with even number of sites. Another initial state, i.e., the equally superposition state, is also considered. The coherence of the whole system is proved to be \(N-1\) (\(2N-1\)) for any odd (even) time step where N is the number of sites. We also investigate the influence of two unitary noises, i.e., noisy Hadamard operator and broken link, on the coherence evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. By curve fitting, we have \(C(|{\varPsi }(t)\rangle )=1.527 t^{0.9405}\) and \(C(Tr_C(|{\varPsi }(t)\rangle ))=0.5818 t^{0.9626}\).

References

  1. Barber, M.N., Ninham, B.W.: Random and Restricted Walks: Theory and Applications. CRC Press, Boca Raton (1970)

    MATH  Google Scholar 

  2. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48, 1687 (1993)

    Article  ADS  Google Scholar 

  3. Kendon, V., Tregenna, B.: Decoherence can be useful in quantum walks. Phys. Rev. A 67, 042315 (2003)

    Article  ADS  Google Scholar 

  4. Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, pp. 50–59. ACM (2001)

  5. Maloyer, O., Kendon, V.: Decoherence versus entanglement in coined quantum walks. New J. Phys. 9, 87 (2007)

    Article  ADS  Google Scholar 

  6. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58, 915 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  7. Du, Y.M., Lu, L.H., Li, Y.Q.: Switching effect of the side chain on quantum walks on triple graphs. Phys. Rev. A 92, 012309 (2015)

    Article  ADS  Google Scholar 

  8. Oliveira, A., Portugal, R., Donangelo, R.: Decoherence in two-dimensional quantum walks. Phys. Rev. A 74, 012312 (2006)

    Article  ADS  Google Scholar 

  9. Shapira, D., Biham, O., Bracken, A., Hackett, M.: One-dimensional quantum walk with unitary noise. Phys. Rev. A 68, 062315 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  10. Rodriguez, J.P., Li, Z.J., Wang, J.B.: Discord and entanglement of two-particle quantum walk on cycle graphs. Quantum Inf. Process. 14, 119 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Sansoni, L., Sciarrino, F., Vallone, G., Mataloni, P., Crespi, A., Ramponi, R., Osellame, R.: Two-particle Bosonic–Fermionic quantum walk via integrated photonics. Phys. Rev. Lett. 108, 010502 (2012)

    Article  ADS  Google Scholar 

  12. Xue, P., Zhang, R., Bian, Z.H., Zhan, X., Qin, H., Sanders, B.C.: Localized state in a two-dimensional quantum walk on a disordered lattice. Phys. Rev. A 92, 042316 (2015)

    Article  ADS  Google Scholar 

  13. Xu, Y.Z., Guo, G.D., Lin, S.: One-dimensional three-state quantum walk with single-point phase defects. Int. J. Theor. Phys. 55, 4060 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  14. Romanelli, A., Siri, R., Abal, G., Auyuanet, A., Donangelo, R.: Decoherence in the quantum walk on the line. Physica A 347, 137 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  15. Zhang, Y.C., Bao, W.S., Wang, X., Fu, X.Q.: Decoherence in optimized quantum random-walk search algorithm. Chin. Phys. B 24, 080307 (2015)

    Article  ADS  Google Scholar 

  16. Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67, 052307 (2003)

    Article  ADS  Google Scholar 

  17. Potocek, V., Gabris, A., Kiss, T., Jex, I.: Optimized quantum random-walk search algorithms on the hypercube. Phys. Rev. A 79, 012325 (2009)

    Article  ADS  Google Scholar 

  18. Xue, X.L., Chen, H.W., Liu, Z.H., Zhang, B.B.: Search algorithm of structure anomalies in complete graph based on scattering quantum walk. Acta Phys. Sin. 65, 080302 (2016)

    Google Scholar 

  19. Xue, X.L., Chen, H.W., Liu, Z.H.: Finding structural anomalies in complete graphs using scattering quantum walks. Int. J. Quantum Inf. 14, 1650035 (2016)

    Article  MATH  Google Scholar 

  20. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  21. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  22. Yao, Y., Xiao, X., Ge, L., Sun, C.P.: Quantum coherence in multipartite systems. Phys. Rev. A 92, 022112 (2015)

    Article  ADS  Google Scholar 

  23. Yao, Y., Dong, G.H., Xiao, X., Sun, C.P.: Frobenius-norm-based measures of quantum coherence and asymmetry. Sci. Rep. 6, 32010 (2016)

    Article  ADS  Google Scholar 

  24. Wang, J.C., Tian, Z.H., Jing, J.L., Fan, H.: Irreversible degradation of quantum coherence under relativistic motion. Phys. Rev. A 93, 062105 (2016)

    Article  ADS  Google Scholar 

  25. Liu, X.B., Tian, Z.H., Wang, J.C., Jing, J.L.: Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field. Ann. Phys. 366, 102 (2016)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Hu, X.Y.: Coherence non-generating channels. Phys. Rev. A 94, 012326 (2016)

    Article  ADS  Google Scholar 

  27. Chen, M.M., Luo, Y., Shao, L.H., Li, Y.M.: Dynamics of Cohering and Decohering Power Under Markovian Channels. arXiv: 1612.05355 (2016)

  28. Hu, M.L., Fan, H.: Evolution equation for quantum coherence. Sci. Rep. 6, 29260 (2016)

    Article  ADS  Google Scholar 

  29. Situ, H.Z., Hu, X.Y.: Dynamics of relative entropy of coherence under Markovian channels. Quantum Inf. Process. 15, 4649 (2016)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Huang, Z.M., Situ, H.Z.: Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar field. Ann. Phys. 377, 484–492 (2017)

    Article  ADS  MATH  Google Scholar 

  31. Huang, Z.M., Situ, H.Z.: Optimal protection of quantum coherence in noisy environment. Int. J. Theor. Phys. 56, 503 (2017)

    Article  MATH  Google Scholar 

  32. Huang, Z.M., Situ, H.Z., Zhang, C.: Quantum coherence and correlation in spin models with Dzyaloshinskii–Moriya interaction. Int. J. Theor. Phys. 56, 2178 (2017)

    Article  MathSciNet  Google Scholar 

  33. Huang, Z.M., Rong, Z.B., Zou, X.F., Situ, H.Z., Zhao, L.H.: Protecting qutrit quantum coherence. Int. J. Theor. Phys. 56, 2540 (2017)

    Article  MathSciNet  Google Scholar 

  34. Huang, Z.M., Situ, H.Z.: Non-Markovian dynamics of quantum coherence of two-level system driven by classical field. Quantum Inf. Process. 16, 222 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  35. Hillery, M.: Coherence as a resource in decision problems: the Deutsch–Jozsa algorithm and a variation. Phys. Rev. A 93, 012111 (2016)

    Article  ADS  Google Scholar 

  36. Ma, J.J., Yadin, B., Girolami, D., Vedral, V., Gu, M.: Converting coherence to quantum correlations. Phys. Rev. Lett. 116, 160407 (2016)

    Article  ADS  Google Scholar 

  37. Matera, J.M., Egloff, D., Killoran, N., Plenio, M.B.: Coherent control of quantum systems as a resource theory. Quantum Sci. Technol. 1, 01LT01 (2016)

    Article  Google Scholar 

  38. Kendon, V.: Decoherence in quantum walks—a review. Math. Struct. Comput. Sci. 17, 1169 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 61502179, 61472452, 11647140, 61772565), the Natural Science Foundation of Guangdong Province of China (Nos. 2014A030310265, 2014A030313157, 2017A030313378), the Science and Technology Program of Guangzhou City of China (No. 201707010194), the Fundamental Research Funds for the Central Universities (No. 17lgzd29), the Research Foundation for Talented Scholars of Foshan University (No. gg040996), the Science Foundation for Young Teachers of Wuyi University (No. 2015zk01) and the Doctoral Research Foundation of Wuyi University (No. 2017BS07). H.Z. Situ is sponsored by the State Scholarship Fund of the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haozhen Situ.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Z., Huang, Z., Li, L. et al. Coherence of one-dimensional quantum walk on cycles. Quantum Inf Process 16, 271 (2017). https://doi.org/10.1007/s11128-017-1724-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1724-6

Keywords

Navigation