Skip to main content
Log in

Joint remote control of an arbitrary single-qubit state by using a multiparticle entangled state as the quantum channel

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a scheme for joint remote implementation of an arbitrary single-qubit operation following some ideas in one-way quantum computation. All the senders share the information of implemented quantum operation and perform corresponding single-qubit measurements according to their information of implemented operation. An arbitrary single-qubit operation can be implemented upon the remote receiver’s quantum system if the receiver cooperates with all the senders. Moreover, we study the protocol of multiparty joint remote implementation of an arbitrary single-qubit operation with many senders by using a multiparticle entangled state as the quantum channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bennett, C.H., Brassad, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India. IEEE, New York, pp. 175–179. IEEE Press, New York (1984)

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68(5), 557–559 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78(2), 022321 (2008)

    Article  ADS  Google Scholar 

  5. Pinheiro, P., Ramos, R.: Two-layer quantum key distribution. Quantum Inf. Process. 14(6), 2111–2124 (2015)

    Article  ADS  MATH  Google Scholar 

  6. Zhang, C.M., Li, M., Yin, Z.Q., Li, H.W., Chen, W., Han, Z.F.: Decoy-state measurement-deviceindependent quantum key distribution with mismatchedbasis statistics. Sci. China Phys. Mech. Astron. 58(9), 590301 (2015)

    Article  Google Scholar 

  7. Bai, Z.L., Wang, X.Y., Yang, S.S., Li, Y.H.: High-efficiency Gaussian key reconciliation in continuous variable quantum key distribution. Sci. China Phys. Mech. Astron. 59(1), 614201 (2016)

    Article  Google Scholar 

  8. Cao, D.Y., Liu, B.H., Wang, Z., Huang, Y.F., Li, C.F., Guo, G.C.: Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons. Sci. Bull. 60(12), 1128–1132 (2015)

    Article  Google Scholar 

  9. Liu, X.M., Zhang, L.J., Wang, Y.G., Chen, W., Huang, D.J., Li, D., Wang, S., He, D.Y., Yin, Z.Q., Zhou, Y., Hui, C., Han, Z.F.: FPGA based digital phase-coding quantum key distribution system. Sci. China Phys. Mech. Astron. 58(12), 120301 (2015)

    Article  Google Scholar 

  10. Huang, W., Su, Q., Xu, B.J., Liu, B., Fan, F., Jia, H.Y., Yang, Y.H.: Improved multiparty quantum key agreement in travelling mode. Sci. China Phys. Mech. Astron. 59(12), 120311 (2016)

    Article  Google Scholar 

  11. Leverrier, A.: Security of continuous-variable quantum key distribution via a Gaussian de Finetti reduction. Phys. Rev. Lett. 118(20), 200501 (2017)

    Article  ADS  Google Scholar 

  12. Long, G.L., Liu, X.S.: Theoretically efficient highcapacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    Article  ADS  Google Scholar 

  13. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  14. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)

    Article  ADS  Google Scholar 

  15. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71(4), 044305 (2005)

    Article  ADS  Google Scholar 

  16. Hu, J.Y., Yu, B., Jing, M.Y., Xiao, L.T., Jia, S.T., Qin, G.Q., Long, G.L.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5(9), e16144 (2016)

    Article  Google Scholar 

  17. Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118(22), 220501 (2017)

    Article  ADS  Google Scholar 

  18. Kwiat, P.G.: Hyper-entangled states. J. Mod. Optic. 44(11/12), 2173–2184 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Deng, F.G., Ren, B.C., Li, X.H.: Quantum hyperentanglement and its applications in quantum information processing. Sci. Bull. 62(1), 46–68 (2017)

    Article  Google Scholar 

  20. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett 70(13), 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(6660), 575–579 (1997)

    Article  ADS  MATH  Google Scholar 

  22. Xiao, X., Yao, Y., Zhong, W.J., Li, Y.L., Xie, Y.M.: Enhancing teleportation of quantum Fisher information by partial measurements. Phys. Rev. A 93(1), 012307 (2016)

    Article  ADS  Google Scholar 

  23. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63(1), 014302 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  24. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization 10 of quantum-communication complexity. Phys. Rev. A 62(1), 012313 (2000)

    Article  ADS  Google Scholar 

  25. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87(7), 077902 (2001)

    Article  ADS  Google Scholar 

  26. Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B At. Mol. Opt. Phys. 40(18), 3719–3724 (2007)

    Article  ADS  Google Scholar 

  27. Nguyen, B.A., Kim, J.: Joint remote state preparation. J. Phys. B At. Mol. Opt. Phys. 41(9), 095501 (2008)

    Article  ADS  Google Scholar 

  28. Liang, H.Q., Liu, J.M., Feng, S.S., Chen, J.G., Xu, X.Y.: Effects of noises on joint remote state preparation via a GHZ-class channel. Quantum Inf. Process. 14(10), 3857–3877 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76(5), 722 (1996)

    Article  ADS  Google Scholar 

  30. Pan, J.W., Simon, C., Brukne, C., Zellinger, A.: Entanglement purification for quantum communication. Nature 410(6832), 1067–1070 (2001)

    Article  ADS  Google Scholar 

  31. Simon, C., Pan, J.W.: Polarization entanglement purification using spatial entanglement. Phys. Rev. Lett. 89(25), 257901 (2002)

    Article  ADS  Google Scholar 

  32. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity. Phys. Rev. A 77(4), 042308 (2008)

    Article  ADS  Google Scholar 

  33. Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81(3), 032307 (2010)

    Article  ADS  Google Scholar 

  34. Sheng, Y.B., Deng, F.G.: One-step deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82(4), 044305 (2010)

    Article  ADS  Google Scholar 

  35. Li, X.H.: Deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82(4), 044304 (2010)

    Article  ADS  Google Scholar 

  36. Deng, F.G.: One-step error correction for multipartite polarization entanglement. Phys. Rev. A 83(6), 062316 (2011)

    Article  ADS  Google Scholar 

  37. Sheng, Y.B., Zhou, L.: Deterministic entanglement distillation for secure double-server blind quantum computation. Sci. Rep. 5, 7815 (2015)

    Article  Google Scholar 

  38. Wang, T.J., Song, S.Y., Long, G.L.: Quantum repeater based on spatial entanglement of photons and quantumdot spins in optical microcavities. Phys. Rev. A 85(6), 062311 (2012)

    Article  ADS  Google Scholar 

  39. Ren, B.C., Du, F.F., Deng, F.G.: Two-step hyperentanglement purification with the quantum-statejoining method. Phys. Rev. A 90(5), 052309 (2014)

    Article  ADS  Google Scholar 

  40. Li, T., Yang, G.J., Deng, F.G.: Heralded quantum repeater for a quantum communication network based on quantum dots embedded in optical microcavities. Phys. Rev. A 93(1), 012302 (2016)

    Article  ADS  Google Scholar 

  41. Wang, G.Y., Liu, Q., Deng, F.G.: Hyperentanglement purification for two-photon six-qubit quantum systems. Phys. Rev. A 94(3), 032319 (2016)

    Article  ADS  Google Scholar 

  42. Sheng, Y.B., Zhou, L.: Two-step complete polarization logic Bell-state analysis. Sci. Rep. 5, 13453 (2015)

    Article  ADS  Google Scholar 

  43. Wang, T.J., Liu, L.L., Zhang, R., Cao, C., Wang, C.: One-step hyperentanglement purification and hyperdistillation with linear optics. Opt. Express 23(7), 9284–9294 (2015)

    Article  ADS  Google Scholar 

  44. Zhou, L., Sheng, Y.B.: Complete logic Bell-state analysis assisted with photonic Faraday rotation. Phys. Rev. A 92(4), 042314 (2015)

    Article  ADS  Google Scholar 

  45. Zhou, L., Sheng, Y.B.: Feasible logic Bell-state analysis with linear optics. Sci. Rep. 6, 20901 (2016)

    Article  ADS  Google Scholar 

  46. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53(4), 2046 (1996)

    Article  ADS  Google Scholar 

  47. Zhao, Z., Pan, J.W., Zhan, M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64(1), 014301 (2001)

    Article  ADS  Google Scholar 

  48. Yamamoto, T., Koashi, M., Imoto, N.: Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A 64(1), 012304 (2001)

    Article  ADS  Google Scholar 

  49. Ren, B.C., Du, F.F., Deng, F.G.: Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88(1), 012302 (2013)

    Article  ADS  Google Scholar 

  50. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77(6), 062325 (2008)

    Article  ADS  Google Scholar 

  51. Sheng, Y.B., Zhou, L., Zhao, S.M., Zheng, B.Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85(1), 012307 (2012)

    Article  ADS  Google Scholar 

  52. Deng, F.G.: Optimal nonlocal multipartite entanglement concentration based on projection measurements. Phys. Rev. A 85(2), 022311 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  53. Sheng, Y.B., Zhou, L., Zhao, S.M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85(4), 042302 (2012)

    Article  ADS  Google Scholar 

  54. Cao, C., Wang, C., He, L.Y., Zhang, R.: Atomic entanglement purification and concentration using coherent state input-output process in low-Q cavity QED regime. Opt. Express 21(4), 4093–4105 (2013)

    Article  ADS  Google Scholar 

  55. Ren, B.C., Long, G.L.: General hyperentanglement concentration for photon systems assisted by quantum-dot spins inside optical microcavities. Opt. Express 22(6), 6547–6561 (2014)

    Article  ADS  Google Scholar 

  56. Ren, B.C., Long, G.L.: Highly efficient hyperentanglement concentration with two steps assisted by quantum swap gates. Sci. Rep. 5, 16444 (2015)

    Article  ADS  Google Scholar 

  57. Li, X.H., Ghose, S.: Hyperentanglement concentration for time-bin and polarization hyperentangled photons. Phys. Rev. A 91(6), 062302 (2015)

    Article  ADS  Google Scholar 

  58. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science, pp. 124–134 (1994)

  59. Long, G.L., Xiao, L.: Parallel quantum computing in a single ensemble quantum computer. Phys. Rev. A 69(5), 052303 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  60. Feng, G.R., Xu, G.F., Long, G.L.: Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110(19), 190501 (2013)

    Article  ADS  Google Scholar 

  61. Ren, B.C., Deng, F.G.: Hyper-parallel photonic quantum computation with coupled quantum dots. Sci. Rep. 4, 4623 (2014)

    Article  Google Scholar 

  62. Ren, B.C., Wang, G.Y., Deng, F.G.: Universal hyperparallel hybrid photonic quantum gates with dipoleinduced transparency in the weak-coupling regime. Phys. Rev. A 91(3), 032328 (2015)

    Article  ADS  Google Scholar 

  63. Ren, B.C., Deng, F.G.: Robust hyperparallel photonic quantum entangling gate with cavity QED. Opt. Express 25(10), 10863–10873 (2017)

    Article  ADS  Google Scholar 

  64. Li, T., Long, G.L.: Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities. Phys. Rev. A 94(2), 022343 (2016)

    Article  ADS  Google Scholar 

  65. Li, T., Deng, F.G.: Error-rejecting quantum computing with solid-state spins assisted by low-optical microcavities. Phys. Rev. A 94(6), 062310 (2016)

    Article  ADS  Google Scholar 

  66. Song, X.K., Ai, Q., Qiu, J., Deng, F.G.: Physically feasible three-level transitionless quantum driving with multiple Schrodinger dynamics. Phys. Rev. A 93(5), 052324 (2016)

    Article  ADS  Google Scholar 

  67. Song, X.K., Zhang, H., Ai, Q., Qiu, J., Deng, F.G.: Shortcuts to adiabatic holonomic quantum computation in decoherence-free subspace with transitionless quantum driving algorithm. New J. Phys. 18(2), 023001 (2016)

    Article  ADS  Google Scholar 

  68. Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113(13), 130503 (2014)

    Article  ADS  Google Scholar 

  69. Monras, A., Sentis, G., Wittek, P.: Inductive supervised quantum learning. Phys. Rev. Lett. 118(19), 190503 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  70. Sheng, Y.B., Zhou, L.: Distributed secure quantum machine learning. Sci. Bull. 62(14), 1025–1029 (2017)

    Article  Google Scholar 

  71. Huelga, S.F., Vaccaro, J.A., Chefles, A.: Quantum remote control: teleportation of unitary operations. Phys. Rev. A 63(4), 042303 (2001)

    Article  ADS  MATH  Google Scholar 

  72. He, Y.H., Lu, Q.C., Liao, Y.M., Qin, X.C., Qin, J.S., Zhou, P.: Bidirectional controlled remote implementation of an arbitrary single qubit unitary operation with EPR and cluster states. Int. J. Theor. Phys. 54(4), 1726–1736 (2015)

    Article  MATH  Google Scholar 

  73. Fan, Q.B., Liu, D.D.: Controlled remote implementation of partially unknown quantum operation. Sci. China Ser. G Phys. Mech. Astron. 51(11), 1661–1667 (2008)

    Article  ADS  Google Scholar 

  74. Lin, J.Y., He, J.G., Gao, Y.C., Li, X.M., Zhou, P.: Controlled remote implementation of an arbitrary singlequbit operation with partially entangled quantum channel. Int. J. Theor. Phys. 56(4), 1085–1095 (2017)

    Article  MATH  Google Scholar 

  75. Wang, S.F., Liu, Y.M., Chen, J.L., Liu, X.S., Zhang, Z.J.: Deterministic single-qubit operation sharing with five-qubit cluster state. Quantum Inf. Process. 12(7), 2497–2507 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. Peng, J.: Tripartite operation sharing with five-qubit Brown state. Quantum Inf. Process. 15(6), 2465–2473 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. Xiang, G.Y., Li, J., Guo, G.C.: Teleporting a rotation on remote photons. Phys. Rev. A 71(4), 044304 (2005)

    Article  ADS  Google Scholar 

  78. Huelga, S.F., Plenio, M.B., Vaccaro, J.A.: Remote control of restricted sets of operations: teleportation of angles. Phys. Rev. A 65(4), 042316 (2002)

    Article  ADS  Google Scholar 

  79. Wang, A.M.: Remote implementations of partially unknown quantum operations of multiqubits. Phys. Rev. A 74(3), 032317 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  80. Qiu, L., Wang, A.M.: Scheme for remote implementation of partially unknown quantum operation of two qubits in cavity QED. Commun. Theor. Phys. 50(5), 1233 (2008)

    Article  ADS  MATH  Google Scholar 

  81. Hu, S., Cui, W.X., Wang, D.Y., Bai, C.H., Guo, Q., Wang, H.F., Zhu, A.D., Zhang, S.: Teleportation of a Toffoli gate among distant solid-state qubits with quantum dots embedded in optical microcavities. Sci. Rep. 5, 11321 (2015)

    Article  ADS  Google Scholar 

  82. Huang, Y.F., Ren, X.F., Zhang, Y.S., Duan, L.M., Guo, G.C.: Experimental teleportation of a quantum controlled-NOT gate. Phys. Rev. Lett. 93(24), 240501 (2004)

    Article  ADS  Google Scholar 

  83. Wang, A.M.: Combined and controlled remote implementations of partially unknown quantum operations of multiqubits using Greenberger–Horne–Zeilinger states. Phys. Rev. A 75(6), 062323 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  84. Chen, Y.T., Hwang, T.: Multiparty quantum remote control. Quantum Inf. Process. 12(11), 3545–3552 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. Chen, L.B., Lu, H.: Deterministic and controlled many-to-one and one-to-many remote quantum rotations via partially entangled quantum channels. Sci. China Ser. G Phys. Mech. Astron. 44(11), 1187–1195 (2014)

    Article  Google Scholar 

  86. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86(22), 5188 (2001)

    Article  ADS  Google Scholar 

  87. Mantri, A., Demarie, T.F., Fitzsimons, J.F.: Universality of quantum computation with cluster states and (X, Y)-plane measurements. Sci. Rep. 7, 42861 (2017)

    Article  ADS  Google Scholar 

  88. Li, Y.H., Jin, X.M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15(2), 929–945 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  89. Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86(5), 910 (2001)

    Article  ADS  Google Scholar 

  90. Zhou, D.L., Zeng, B., Xu, Z., Sun, C.P.: Quantum computation based on d-level cluster state. Phys. Rev. A 68(6), 062303 (2003)

    Article  ADS  Google Scholar 

  91. Duan, L.M., Demler, E., Lukin, M.D.: Controlling spin exchange interactions of ultracold atoms in optical lattices. Phys. Rev. Lett. 91(9), 090402 (2003)

    Article  ADS  Google Scholar 

  92. O’Brien, J.L., Pryde, G.J., White, A.G., Ralph, T.C., Branning, D.: Demonstration of an all-optical quantum controlled-NOT gate. Nature 426(6964), 264–267 (2003)

    Article  ADS  Google Scholar 

  93. Isenhower, L., Urban, E., Zhang, X.L., Gill, A.T., Henage, T., Johnson, T.A., Walker, T.G., Saffman, M.: Demonstration of a neutral atom controlled-NOT quantum gate. Phys. Rev. Lett. 104(1), 010503 (2010)

    Article  ADS  Google Scholar 

  94. Li, X.H., Deng, F.G., Zhou, H.Y.: Faithful qubit transmission against collective noise without ancillary qubits. Appl. Phys. Lett. 91(14), 144101 (2007)

    Article  ADS  Google Scholar 

  95. Jiang, M., Dong, D.Y.: A recursive two-phase general protocol on deterministic remote preparation of a class of multi-qubit states. J. Phys. B At. Mol. Opt. Phys. 45(20), 205506 (2012)

    Article  ADS  Google Scholar 

  96. Nguyen, B.A., Bich, C.T., Nung, V.D.: Deterministic joint remote state preparation. Phys. Lett. A 375(41), 3570–3573 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61501129 and 11564004, Natural Science Foundation of Guangxi under Grant Nos. 2014GXNSFAA118008, Special Funds of Guangxi Distinguished Experts Construction Engineering and Xiangsihu Young Scholars and Innovative Research Team of GXUN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, SX., Zhao, ZW. & Zhou, P. Joint remote control of an arbitrary single-qubit state by using a multiparticle entangled state as the quantum channel. Quantum Inf Process 17, 8 (2018). https://doi.org/10.1007/s11128-017-1774-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1774-9

Keywords

Navigation