Skip to main content
Log in

How the Hawking radiation affect quantum Fisher information of Dirac particles in the background of a Schwarzschild black hole

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this work, the effect of Hawking radiation on the quantum Fisher information (QFI) of Dirac particles is investigated in the background of a Schwarzschild black hole. Interestingly, it has been verified that the QFI with respect to the weight parameter \(\theta \) of a target state is always independent of the Hawking temperature T. This implies that if we encode the information on the weight parameter, then we can affirm that the corresponding accuracy of the parameter estimation will be immune to the Hawking effect. Besides, it reveals that the QFI with respect to the phase parameter \(\phi \) exhibits a decay behavior with the increase in the Hawking temperature T and converges to a nonzero value in the limit of infinite Hawking temperature T. Remarkably, it turns out that the function \(F_\phi \) on \(\theta =\pi \big /4\) symmetry was broken by the influence of the Hawking radiation. Finally, we generalize the case of a three-qubit system to a case of a N-qubit system, i.e., \(|\psi \rangle _{1,2,3,\ldots ,N} =(\cos \theta | 0 \rangle ^{\otimes N}+\sin \theta \mathrm{e}^{i\phi }| 1 \rangle ^{\otimes N})\) and obtain an interesting result: the number of particles in the initial state does not affect the QFI \(F_\theta \), nor the QFI \(F_\phi \). However, with the increasing number of particles located near the event horizon, \(F_\phi \) will be affected by Hawking radiation to a large extent, while \(F_\theta \) is still free from disturbance resulting from the Hawking effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fisher, R.A.: Theory of statistical estimation. Proc. Camb. Philos. Soc. 22(5), 700–725 (1925)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Chentsov, N.N.: Statistical Decision Rules and Optimal Inferences. Nauka, Moscow (1972); (in Russian)

  3. Amari, S.I.: Differential-Geometric Methods in Statistics. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  4. Frieden, B.R., Soffer, B.H.: Lagrangians of physics and the game of Fisher-information transfer. Phys. Rev. E 52, 2274–2286 (1995)

    Article  ADS  Google Scholar 

  5. Ma, J., Huang, Y.X., Wang, X., Sun, C.P.: Quantum Fisher information of the Greenberger–Horne–Zeilinger state in decoherence channels. Phys. Rev. A 84, 022302 (2011)

    Article  ADS  Google Scholar 

  6. Zhong, W., Sun, Z., Ma, J., Wang, X., Nori, F.: Fisher information under decoherence in Bloch representation. Phys. Rev. A 87, 022337 (2013)

    Article  ADS  Google Scholar 

  7. Hyllus, P., Laskowski, W., Krischek, R., Schwemmer, C., Wieczorek, W., Weinfurter, H., Pezze, L., Smerzi, A.: Fisher information and multiparticle entanglement. Phys. Rev. A 85, 022321 (2012)

    Article  ADS  Google Scholar 

  8. Zhang, Y.M., Li, X.W., Yang, W., Jin, G.R.: Quantum Fisher information of entangled coherent states in the presence of photon loss. Phys. Rev. A 88, 043832 (2013)

    Article  ADS  Google Scholar 

  9. Song, H.: Quantum non-Markovianity based on the Fisher-information matrix. Phys. Rev. A 91, 042110 (2015)

    Article  ADS  Google Scholar 

  10. Giovanetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306(5700), 1330–1336 (2004)

    Article  ADS  Google Scholar 

  11. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  12. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photonics 5, 222–229 (2011)

    Article  ADS  Google Scholar 

  13. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic, New York (1976)

    MATH  Google Scholar 

  14. Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory. North Holland, Amsterdam (1982)

    MATH  Google Scholar 

  15. Lu, X.-M., Wang, X., Sun, C.P.: Quantum Fisher information flow and non-Markovian processes of open systems. Phys. Rev. A 82, 042103 (2010)

    Article  ADS  Google Scholar 

  16. Luo, S.: Quantum Fisher information and uncertainty relations. Lett. Math. Phys. 53(3), 243–251 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Luo, S.: Wigner–Yanase skew information and uncertainty relations. Phys. Rev. Lett. 91, 180403 (2003)

    Article  ADS  Google Scholar 

  18. Gibilisco, P., Isola, T.: Uncertainty principle and quantum Fisher information. Ann. Inst. Stat. Math. 59(1), 147–159 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gibilisco, P., Imparato, D., Isola, T.: Uncertainty principle and quantum Fisher information. II. J. Math. Phys. 48, 072109 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Watanabe, Y., Sagawa, T., Ueda, M.: Uncertainty relation revisited from quantum estimation theory. Phys. Rev. A 84, 042121 (2011)

    Article  ADS  Google Scholar 

  21. Li, N., Luo, S.: Entanglement detection via quantum Fisher information. Phys. Rev. A 88, 014301 (2013)

    Article  ADS  Google Scholar 

  22. Khan, S., Khan, M.K.: Open quantum systems in noninertial frames. J. Phys. A 44, 045305 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Omkar, S., Banerjee, S., Srikanth, R., Alok, A.K.: The Unruh effect interpreted as a quantum noise channel. Quantum Inf. Comp. 16, 0757 (2016)

    MathSciNet  Google Scholar 

  24. Khan, S., Khan, M.K.: Entanglement of open quantum systems in noninertial frames. Open Syst. Inf. Dyn. 19, 1250013 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Khan, S.: Entanglement of tripartite states with decoherence in non-inertial frames. J. Mod. Opt. 59, 250–258 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Datta, A.: Quantum discord between relatively accelerated observers. Phys. Rev. A 80, 052304 (2009)

    Article  ADS  Google Scholar 

  27. Wang, J.C., Deng, J., Jing, J.: Classical correlation and quantum discord sharing of Dirac fields in noninertial frames. Phys. Rev. A 81, 052120 (2010)

    Article  ADS  Google Scholar 

  28. Yao, Y., Xiao, X., Ge, L., Wang, X.G., Sun, C.P.: Quantum Fisher information in noninertial frames. Phys. Rev. A 89, 042336 (2014)

    Article  ADS  Google Scholar 

  29. Pan, Q., Jing, J.: Hawking radiation, entanglement, and teleportation in the background of an asymptotically flat static black hole. Phys. Rev. D 78, 065015 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  30. Xu, S., Song, X.K., Shi, J., Ye, L.: How the Hawking effect affects multipartite entanglement of Dirac particles in the background of a Schwarzschild black hole. Phys. Rev. D 89, 065022 (2014)

    Article  ADS  Google Scholar 

  31. He, J., Xu, S., Song, X., Yu, Y., Ye, L.: Property of various correlation measures of open Dirac system with Hawking effect in Schwarzschild space-time. Phys. Lett. B. 740, 322–328 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Brill, D.R., Wheeler, J.A.: Interaction of neutrinos and gravitational fields. Rev. Mod. Phys 29, 465 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Wang, J.C., Jing, J., Fan, H.: Quantum discord and measurement-induced disturbance in the background of dilaton black holes. Phys. Rev. D 90, 025032 (2014)

    Article  ADS  Google Scholar 

  34. Jing, J.: Late-time behavior of massive Dirac fields in a Schwarzschild background. Phys. Rev. D 70, 065004 (2004)

    Article  ADS  Google Scholar 

  35. Wang, J., Pang, Q., Jing, J.: Projective measurements and generation of entangled Dirac particles in Schwarzschild spacetime. Ann. Phys. 325, 1190 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Deng, J., Wang, J., Jing, J.: How the Hawking effect and prepared states affect entanglement distillability of Dirac fields. Phys. Lett. B 695, 495500 (2011)

    Article  Google Scholar 

  37. Barnett, S.M., Radmore, P.M.: Methods in Theoretical Quantum Optics, pp. 67–80. Oxford University Press, New York (1997)

    MATH  Google Scholar 

  38. Xu, S., Song, X.K., Shi, J.D., Ye, L.: Probing the quantum correlation and Bell non-locality for Dirac particles with Hawking effect in the background of Schwarzschild black hole. Phys. Lett. B 733, 1–5 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Pairs, M.G.A.: Quantum estimation for quantum technology. Int. J. Quantum Inf. 7, 125–317 (2009)

    Article  Google Scholar 

  40. Liu, J., Jing, X., Wang, X.: Phase-matching condition for enhancement of phase sensitivity in quantum metrology. Phys. Rev. A 88, 042316 (2013)

    Article  ADS  Google Scholar 

  41. Zhong, W., Sun, Z., Ma, J., Wang, X., Nori, F.: Fisher information under decoherence in Bloch representation. Phys. Rev. A 87, 022337 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China under Grant Nos. 11575001, 61601002 and 11247009, and also by Natural Science Foundation of Anhui Province (Grant No. 1508085QF139).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Ma, Wc., Wang, D. et al. How the Hawking radiation affect quantum Fisher information of Dirac particles in the background of a Schwarzschild black hole. Quantum Inf Process 17, 16 (2018). https://doi.org/10.1007/s11128-017-1779-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1779-4

Keywords

Navigation