Skip to main content
Log in

Effects of atmospheric turbulence on the single-photon receiving efficiency and the performance of quantum channel with the modified approximate elliptic-beam model assumption

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In free space quantum channel, with the introduction and implementation of the satellite-ground link transmission, the researches of single-photon transmission have attracted great interest. We propose a single-photon receiving model and analyze the influence of the atmospheric turbulence on the single-photon transmission. We obtain the relationship between single-photon receiving efficiency and atmospheric turbulence, and analyze the influence of the atmospheric turbulence on the quantum channel performance by the single-photon counting. Finally, we present a reasonable simulation analysis. Simulation results show that as the strength of the atmospheric fluctuations increases, the counting distribution gradually broadens, and the utilization of quantum channel drops. Furthermore, the key generation rate and transmission distance decreases sharply in the case of strong turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schmitt-Manderbach, T., Weier, H., Fürst, M.: Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98(1), 010504 (2007)

    Article  ADS  Google Scholar 

  2. Monken, H.C., Avetisyan, H.: Higher order correlation beams in atmosphere under strong turbulence conditions. Opt. Express 24, 2318 (2016)

    Article  ADS  Google Scholar 

  3. Bennett, C.H., Bessette, F., Brassard, G.: Experimental quantum cryptography. J. Cryptol. 20(1), 78–80 (1992)

    MATH  Google Scholar 

  4. Kurtsiefer, C., Zarda, P., Halder, M.: A step towards global key distribution. Nature 419(6906), 450 (2002)

    Article  ADS  Google Scholar 

  5. Yin, J., Ren, J.G., Lu, H.: Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 488(7410), 185 (2012)

    Article  ADS  Google Scholar 

  6. Buttler, W.T., Hughes, R.J., Kwiat, P.G.: Practical free-space quantum key distribution over 1 km. Phys. Rev. Lett. 81(15), 3283–3286 (1988)

    Article  ADS  Google Scholar 

  7. Hughes, R.J., Buttler, W.T., Kwiat, P.G.: Free-space quantum cryptography in daylight. SPIE 3932, 117–126 (2000)

    ADS  Google Scholar 

  8. Buttler, W.T., Hufhes, R.J., Lamoreaux, S.K.: Daylight quantum key distribution over 1.6 km. Phys. Rev. Lett. 84(24), 5652 (2000)

    Article  ADS  Google Scholar 

  9. Kurtsiefer, C., Zarda, P., Halder, M.: Long distance free space quantum cryptography. SPIE 4917, 25 (2002)

    ADS  Google Scholar 

  10. Villoresi, P., Jennewein, T., Tamburini, F., Aspelmeyer, M.: Experimental verification of the feasibility of a quantum channel between space and Earth. New J. Phys. 10(3), 3436–3440 (2008)

    Article  Google Scholar 

  11. Fante, R.L.: Electromagnetic beam propagation in turbulent media. Proc. IEEE 68, 1424 (1980)

    Article  ADS  Google Scholar 

  12. Andrews, L., Phillips, R., Hopen, C.: Laser Beam Scintillation with Applications, 416th edn. SPIE Press, Washington (2001)

    Book  MATH  Google Scholar 

  13. Andrews, L., Phillips, R.: Laser Beam Propagation Through Random Media, 808th edn. SPIE Press, Washington (2005)

    Book  Google Scholar 

  14. Agrawal, B., Toseli, I., Restaino, S.: Light propagation through anisotropic turbulence. J. Opt. Soc. Am. A 28(3), 483–485 (2011)

    ADS  Google Scholar 

  15. Costa, D., de Almeida, N.G., Villas-Boas, C.J.: Secure quantum communication using classical correlated channel. Quantum Inf. Process. 15, 4303–4311 (2016)

    Article  ADS  MATH  Google Scholar 

  16. Diament, P., Teich, M.C.: Photodetection of low-level radiation through the turbulent atmosphere. J. Opt. Soc. Am. 60(11), 1489–1494 (1970)

    Article  ADS  Google Scholar 

  17. Pe\(\ddot{r}\)ina, J., Pe\(\ddot{r}\)inov\(\acute{a}\), V., Teich, M.C., Diament, P.: Two descriptions for the photon counting detection of radiation passed through a random medium: a comparison for the turbulence atmosphere. Phys. Rev. A, 7(2), 1732-1737 (1973)

  18. Milonni, P., Carter, J., Peterson, C., Hughes, R.: Effects of propagation through atmospheric turbulence on photon statistics. J. Opt. B 6(8), S742 (2004)

    Article  ADS  Google Scholar 

  19. Semenov, A.A., Vogel, W.: Quantum light in the turbulent atmosphere. Phys. Rev. A 81, 023835 (2010)

    Article  ADS  Google Scholar 

  20. Vasylyev, D.Y., Semenov, A.A., Vogel, W.: Toward global quantum communication: beam wandering preserves nonclassicality. Phys. Rev. Lett. 108(22), 220501 (2012)

    Article  ADS  Google Scholar 

  21. Capraro, I., Tomaello, A., DallArche, A.: Impact of turbulence in long range quantum and classical communications. Phys. Rev. Lett. 109(20), 200502 (2012)

    Article  ADS  Google Scholar 

  22. Shapiro, J.H., Boyd, R.W.: The physics of ghost imaging. Quantum Inf. Process. 11, 949–993 (2013)

    Article  MATH  Google Scholar 

  23. Peuntinger, C., Heim, B., Gabriel, C., \(\text{M}\ddot{u}\)ller, C.R.: Distribution of squeezed states through an atmospheric channel. Phys. Rev. Lett. 113(6), 060502 (2014)

  24. Bykhovsky, D.: Free-space optical channel simulator for weak-turbulence conditions. Appl. Opts. 54(31), 9055 (2015)

    Article  ADS  Google Scholar 

  25. Wu, G., Dai, W., Guo, H.: Beam wander of random electromagnetic gaussian-shell model vortex beams propagating through a Kolmogorov turbulence. Opt. Commun. 336, 55–58 (2015)

    Article  ADS  Google Scholar 

  26. Vasylyev, D., Semenov, A.A., Vogel, W.: Atmospheric quantum channels with weak and strong turbulence. Phys. Rev. Lett. 117, 090501 (2016)

    Article  ADS  Google Scholar 

  27. Pors, B.J., Monken, C.H., Eliel, E.R., Woerdman, J.P.: Transport of orbital-angular-momentum entanglement through a turbulent atmosphere. Opt. Express 19, 6671 (2011)

    Article  ADS  Google Scholar 

  28. da Cunha Perelra, M.V., Fllpl, L.A.P., Monken, C.H.: Cancellation of atmospheric turbulence effects in entangled two-photon beams. Phys. Rev. A 88, 053836 (2013)

    Article  ADS  Google Scholar 

  29. Avetisyan, H., Monken, C.H.: Mode analysis of higher-order transverse-mode correlation beams in turbulent atmosphere. Opt. Lett. 42, 101 (2017)

    Article  ADS  Google Scholar 

  30. SouZa, C.E.R., Borges, C.V.S., Khoury, A.Z.: Quantum key distribution without a shared reference frame. Phys. Rev. A 77, 032345 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Buttler, W.T., Hughes, R.J., Kwiat, P.G.: Free-space quantum key distribution at night. SPIE 3385, 14–22 (1998)

    ADS  Google Scholar 

  32. Zhang, G., Jing, M., Tan, L.: Single-photon acquisition probability for free-space quantum key distribution. Proc. SPIE 5631, 173–180 (2005)

    Article  ADS  Google Scholar 

  33. Corless, R., Gonnet, G., Hare, D., Jeffrey, D., Knuth, D.: On the lambert w function. Adv. Comput. Math. 5(1), 329–359 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mandel, L.: Fluctuations of photon beams and their correlations. Proc. R. Soc. 72(6), 1037 (1958)

    Article  Google Scholar 

  35. Erven, C., Heim, B., Meyer-Scott, E., Bourgoin, J.P.: Studying free-space transmission statistics and improving free-space quantum key distribution in the turbulent atmosphere. New J. Phys. 14, 123018 (2012)

    Article  ADS  Google Scholar 

  36. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  MATH  Google Scholar 

  37. Jdong, L., Min, S., Hyan, L.: Communication Network Foundation, 49th edn. Higher Education Press, Beijing (2011). (in Chinese)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61301171 and 61372076), the Fundamental Research Funds for the Central Universities (JB No.160115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Xy., Zhao, N., Chen, N. et al. Effects of atmospheric turbulence on the single-photon receiving efficiency and the performance of quantum channel with the modified approximate elliptic-beam model assumption. Quantum Inf Process 17, 14 (2018). https://doi.org/10.1007/s11128-017-1780-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1780-y

Keywords

Navigation