Skip to main content
Log in

Steady-state entanglement and thermalization of coupled qubits in two common heat baths

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this work, we study the steady-state entanglement and thermalization of two coupled qubits embedded in two common baths with different temperatures. The common bath is relevant when the two qubits are difficult to be isolated to only contact with their local baths. With the quantum master equation constructed in the eigenstate representation of the coupled qubits, we have demonstrated the variations of steady-state entanglement with respect to various parameters of the qubits’ system in both equilibrium and nonequilibrium cases of the baths. The coupling strength and energy detuning of the qubits as well as the temperature gradient of the baths are found to be beneficial to the enhancement of the entanglement. We note a dark state of the qubits that is free from time-evolution and its initial population can greatly influence the steady-state entanglement. By virtues of effective temperatures, we also study the thermalization of the coupled qubits and their variations with energy detuning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  2. Plenio, M.B., Huelga, S.F.: Entangled light from white noise. Phys. Rev. Lett. 88, 197901 (2002)

    Article  ADS  Google Scholar 

  3. Braun, D.: Creation of entanglement by interaction with a common heat bath. Phys. Rev. Lett. 89, 277901 (2002)

    Article  Google Scholar 

  4. Diehl, S., et al.: Quantum states and phases in driven open quantum systems. Nat. Phys. 4, 878 (2008)

    Article  Google Scholar 

  5. Arnesen, M.C., Bose, S., Vedral, V.: Natural thermal and magnetic entanglement in the 1D Heisenberg model. Phys. Rev. Lett. 87, 017901 (2001)

    Article  ADS  Google Scholar 

  6. Wang, X.: Entanglement in the quantum Heisenberg XY model. Phys. Rev. A 64, 012313 (2001)

    Article  ADS  Google Scholar 

  7. Wang, X.: Effects of anisotropy on thermal entanglement. Phys. Lett. A 281, 101 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Gunlycke, D., Kendon, V.M., Vedral, V., Bose, S.: Singlet states and the estimation of eigenstates and eigenvalues of an unknown controlled-\(U\) gate. Phys. Rev. A 64, 042302 (2001)

    Article  ADS  Google Scholar 

  9. Kamta, G.L., Starace, Anthony F.: Anisotropy and magnetic field effects on the entanglement of a two qubit Heisenberg \(\mathit{XY}\) chain. Phys. Rev. Lett. 88, 107901 (2002)

    Article  ADS  Google Scholar 

  10. Canosa, N., Rossignoli, R.: Global entanglement in \(XXZ\) chains. Phys. Rev. A 73, 022347 (2006)

    Article  ADS  Google Scholar 

  11. Liao, J.Q., Huang, J.F., Kuang, L.M.: Quantum thermalization of two coupled two-level systems in eigenstate and bare-state representations. Phys. Rev. A 83, 052110 (2011)

    Article  ADS  Google Scholar 

  12. Fu, J.H., Zhang, G.F.: Effect of three-spin interaction on thermal entanglement in Heisenberg XXZ model. Quantum Inf. Process. 16, 275 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Guerrero, M., Roberto, J., Rojas, F.: Thermal entanglement of a coupled electronic spins system: interplay between an external magnetic field, nuclear field and spin–orbit interaction. Quantum Inf. Process. 14, 1973 (2015)

    Article  ADS  MATH  Google Scholar 

  14. Zhang, L., Yan, Y., Wu, C.Q., Wang, J.S., Li, B.: Reversal of thermal rectification in quantum systems. Phys. Rev. B 80, 172301 (2009)

    Article  ADS  Google Scholar 

  15. Zhang, L., Wang, J.S., Li, B.: Ballistic thermal rectification in nanoscale three-terminal junctions. Phys. Rev. B 81, 100301(R) (2010)

    Article  ADS  Google Scholar 

  16. Werlang, T., Marchiori, M.A., Cornelio, M.F., Valente, D.: Optimal rectification in the ultrastrong coupling regime. Phys. Rev. E 89, 062109 (2014)

    Article  ADS  Google Scholar 

  17. Man, Z.X., An, N.B., Xia, Y.J.: Controlling heat flows among three reservoirs asymmetrically coupled to two two-level systems. Phys. Rev. E 94, 042135 (2016)

    Article  ADS  Google Scholar 

  18. Shen, H.Z., Zhou, Y.H., Yi, X.X.: Quantum optical diode with semiconductor microcavities. Phys. Rev. A 90, 023849 (2014)

    Article  ADS  Google Scholar 

  19. Ordonez-Miranda, J., Ezzahri, Y., Joulain, K.: Quantum thermal diode based on two interacting spinlike systems under different excitations. Phys. Rev. E 95, 022128 (2017)

    Article  ADS  Google Scholar 

  20. Li, B., Wang, L., Casati, G.: Thermal diode: rectification of heat flux. Phys. Rev. Lett. 93, 184301 (2004)

    Article  ADS  Google Scholar 

  21. Joulain, K., Drevillon, J., Ezzahri, Y., Ordonez-Miranda, J.: Quantum thermal transistor. Phys. Rev. Lett. 116, 200601 (2016)

    Article  ADS  Google Scholar 

  22. Linden, N., Popescu, S., Skrzypczyk, P.: How small can thermal machines be? The smallest possible refrigerator. Phys. Rev. Lett. 105, 130401 (2010)

    Article  ADS  Google Scholar 

  23. Brunner, N., Linden, N., Popescu, S., Skrzypczyk, P.: Virtual qubits, virtual temperatures, and the foundations of thermodynamics. Phys. Rev. E 85, 051117 (2012)

    Article  ADS  Google Scholar 

  24. Mitchison, M.T., Woods, M.P., Prior, J., Huber, M.: Coherence-assisted single-shot cooling by quantum absorption refrigerators. N. J. Phys. 17, 115013 (2015)

    Article  Google Scholar 

  25. Yu, C.S., Zhu, Q.Y.: Re-examining the self-contained quantum refrigerator in the strong-coupling regime. Phys. Rev. E 90, 052142 (2014)

    Article  ADS  Google Scholar 

  26. Man, Z.X., Xia, Y.J.: Smallest quantum thermal machine: the effect of strong coupling and distributed thermal tasks. Phys. Rev. E 96, 012122 (2017)

    Article  ADS  Google Scholar 

  27. Brask, J.B., Brunner, N.: Small quantum absorption refrigerator in the transient regime: time scales, enhanced cooling, and entanglement. Phys. Rev. E 92, 062101 (2015)

    Article  ADS  Google Scholar 

  28. Zagoskin, A.M., Savel’ev, S., Nori, F., Kusmartsev, F.V.: Squeezing as the source of inefficiency in the quantum Otto cycle. Phys. Rev. B 86, 014501 (2012)

    Article  ADS  Google Scholar 

  29. Long, R., Liu, W.: Performance of quantum Otto refrigerators with squeezing. Phys. Rev. E 91, 062137 (2015)

    Article  ADS  Google Scholar 

  30. Zhao, L.M., Zhang, G.F.: Entangled quantum Otto heat engines based on two-spin systems with the Dzyaloshinski–Moriya interaction. Quantum Inf. Process. 16, 216 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  31. Eisler, V., Zimboras, Z.: Entanglement in the XX spin chain with an energy current. Phys. Rev. A 71, 042318 (2005)

    Article  ADS  Google Scholar 

  32. Quiroga, L., Rodríguez, F.J., Ramírez, M.E., París, R.: Nonequilibrium thermal entanglement. Phys. Rev. A 75, 032308 (2007)

    Article  ADS  Google Scholar 

  33. Sinaysky, I., Petruccione, F., Burgarth, D.: Dynamics of nonequilibrium thermal entanglement. Phys. Rev. A 78, 062301 (2008)

    Article  ADS  Google Scholar 

  34. Huang, X.L., Guo, J.L., Yi, X.X.: Nonequilibrium thermal entanglement in a three-qubit \(XX\) model. Phys. Rev. A 80, 054301 (2009)

    Article  ADS  Google Scholar 

  35. Pumulo, N., Sinayskiy, I., Petruccione, F.: Non-equilibrium thermal entanglement for a three spin chain. Phys. Lett. A 375, 3157 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Brask, J.B., Haack, G., Brunner, N., Huber, M.: Autonomous quantum thermal machine for generating steady-state entanglement. N. J. Phys. 17, 113029 (2015)

    Article  Google Scholar 

  37. Ma, J., Sun, Z., Wang, X., Nori, F.: Entanglement dynamics of two qubits in a common bath. Phys. Rev. A 85, 062323 (2012)

    Article  ADS  Google Scholar 

  38. Man, Z.X., Xia, Y.J., An, N.B.: Manipulating entanglement of two qubits in a common environment by means of weak measurements and quantum measurement reversals. Phys. Rev. A 86, 012325 (2012)

    Article  ADS  Google Scholar 

  39. An, N.B., Kim, J., Kim, K.: Entanglement dynamics of three interacting two-level atoms within a common structured environment. Phys. Rev. A 84, 022329 (2011)

    Article  ADS  Google Scholar 

  40. Bellomo, B., Messina, R., Antezza, M.: Dynamics of an elementary quantum system in environments out of thermal equilibrium. EPL 100, 20006 (2012)

    Article  ADS  Google Scholar 

  41. Bellomo, B., Messina, R., Felbacq, D., Antezza, M.: Quantum systems in a stationary environment out of thermal equilibrium. Phys. Rev. A 87, 012101 (2013)

    Article  ADS  Google Scholar 

  42. Leggio, B., Bellomo, B., Antezza, M.: Quantum thermal machines with single nonequilibrium environments. Phys. Rev. A 91, 012117 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  43. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  MATH  Google Scholar 

  44. Yu, T., Eberly, J.H.: Evolution from entanglement to decoherence of bipartite mixed X states. Quantum Inf. Comput. 7, 459 (2007)

    MathSciNet  MATH  Google Scholar 

  45. Quan, H.T., Zhang, P., Sun, C.P.: Quantum heat engine with multilevel quantum systems. Phys. Rev. E 72, 056110 (2005)

    Article  ADS  Google Scholar 

  46. Quan, H.T., Liu, Y.X., Sun, C.P., Nori, F.: Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 76, 031105 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  47. Quan, H.T., Wang, Y.D., Liu, Y.X., Sun, C.P., Nori, F.: Maxwell’s demon assisted thermodynamic cycle in superconducting quantum circuits. Phys. Rev. Lett. 97, 180402 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Liao, J.Q., Dong, H., Sun, C.P.: Single-particle machine for quantum thermalization. Phys. Rev. A 81, 052121 (2010)

    Article  ADS  Google Scholar 

  49. Wang, C., Chen, Q.H.: Exact dynamics of quantum correlations of two qubits coupled to bosonic baths. N. J. Phys. 15, 103020 (2013)

    Article  Google Scholar 

  50. Man, Z.X., Xia, Y.J., An, N.B.: The transfer dynamics of quantum correlation between systems and reservoirs. J. Phys. B At. Mol. Opt. Phys. 44, 095504 (2011)

    Article  ADS  Google Scholar 

  51. Man, Z.X., Xia, Y.J., An, N.B.: Quantum dissonance induced by a thermal field and its dynamics in dissipative systems. Eur. Phys. J. D 64, 521 (2011)

    Article  ADS  Google Scholar 

  52. Buluta, I., Ashhab, S., Nori, F.: Natural and artificial atoms for quantum computation. Rep. Prog. Phys. 74, 104401 (2011)

    Article  ADS  Google Scholar 

  53. You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature 474, 589 (2011)

    Article  ADS  Google Scholar 

  54. Xiang, Z.L., Ashhab, S., You, J.Q., Nori, F.: Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623 (2013)

    Article  ADS  Google Scholar 

  55. Buluta, I., Nori, F.: Quantum simulators. Science 326, 108 (2009)

    Article  ADS  Google Scholar 

  56. Georgescu, I.M., Ashhab, S., Nori, F.: Quantum simulation. Rev. Mod. Phys. 86, 153 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation (China) under Grant Nos. 11574178 and 61675115, and Shandong Provincial Natural Science Foundation (China) under Grant No. ZR2016JL005

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Xiao Man.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, LZ., Man, ZX. & Xia, YJ. Steady-state entanglement and thermalization of coupled qubits in two common heat baths. Quantum Inf Process 17, 45 (2018). https://doi.org/10.1007/s11128-018-1825-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1825-x

Keywords

Navigation