Skip to main content
Log in

Optimal remote preparation of arbitrary multi-qubit real-parameter states via two-qubit entangled states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we present an efficient scheme for remote state preparation of arbitrary n-qubit states with real coefficients. Quantum channel is composed of n maximally two-qubit entangled states, and several appropriate mutually orthogonal bases including the real parameters of prepared states are delicately constructed without the introduction of auxiliary particles. It is noted that the successful probability is 100% by using our proposal under the condition that the parameters of prepared states are all real. Compared to general states, the probability of our protocol is improved at the cost of the information reduction in the transmitted state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  2. Bennett, C.H., Brassard, G., Grepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Dai, H.Y., Chen, P.X., Li, C.Z.: Probabilistic teleportation of an arbitrary two-particle state by two partial three-particle entangled W states. J. Opt. B 6(1), 106 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  4. Zhang, D., Zha, X.W., Duan, Y.J.: Bidirectional and asymmetric quantum controlled teleportation via maximally eight-qubit entangled state. Quantum Inf. Process. 14, 3835 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Wang, Z.Y., Liu, Y.M., Zuo, X.Q., Zhang, Z.J.: Controlled remote state preparation. Commun. Theor. Phys. 522, 235 (2009)

    ADS  MATH  Google Scholar 

  6. Liu, L.L., Hwang, T.: Controlled remote state preparation protocols via AKLT states. Quantum Inf. Process. 13, 1639 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Dai, H.Y., Chen, P.X., Liang, L.M., Li, C.Z.: Classical communication cost and remote preparation of the four-particle GHZ class state. Phys. Lett. A 355, 285 (2006)

    Article  ADS  Google Scholar 

  8. Wang, D., Ye, L.: Joint remote preparation of a class of four-qubit cluster-like states with tripartite entanglements and positive operator-valued measurements. Int. J. Theor. Phys. 52, 3075 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Luo, M.X., Chen, X.B., Ma, S.Y., Niu, X.X., Yang, Y.X.: Joint remote preparation of an arbitrary three-qubit state. Opt. Commun. 283, 4796 (2010)

    Article  ADS  Google Scholar 

  10. Peng, J.Y., Luo, M.X., Mo, Z.W.: Joint remote state preparation of arbitrary two-particle states via GHZ-type states. Quantum Inf. Process. 12, 2325 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Choudhury, B.S., Dhara, A.: Joint remote state preparation for two-qubit equatorial states. Quantum Inf. Process. 14, 373 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Wang, D., Ye, L.: Multiparty-controlled joint remote preparation. Quantum Inf. Process. 12, 3223 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B 40(18), 3719 (2007)

    Article  ADS  Google Scholar 

  14. Wang, D., Hu, Y.D., Huang, Z.Q., Ye, L.: Efficient and faithful remote preparation of arbitrary three- and four-particle W-class entangled states. Quantum Inf. Process. 14, 2135 (2015)

    Article  ADS  MATH  Google Scholar 

  15. Dai, H.Y., Zhang, M., Kuang, L.M.: Classical communication cost and remote preparation of multi-qubit with three-party. Commun. Theor. Phys. 50, 73 (2008)

    Article  ADS  Google Scholar 

  16. Dai, H.Y., Zhang, M., Zhang, Z.R., Xi, Z.R.: Probabilistic remote preparation of a four-particle entangled W state for the general case and for all kinds of the special cases. Commun. Theor. Phys. 60(3), 313 (2013)

    Article  ADS  MATH  Google Scholar 

  17. Wang, D., Hoehn, R.D., Ye, L., Kais, S.: Generalized remote preparation of arbitrary \(m\)-qubit entangled states via genuine entanglements. Entropy 17, 1755 (2015)

    Article  ADS  Google Scholar 

  18. Wang, D., Huang, A.J., Sun, W.Y., Shi, J.D., Ye, L.: Practical single-photon-assisted remote state preparation with non-maximally entanglement. Quantum Inf. Process. 15, 3367 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Wang, D., Hoehn, R.D., Ye, L., Kais, S.: Efficient remote preparation of four-qubit cluster-type entangled states with multi-party over partially entangled channels. Int. J. Theor. Phys. 55, 3454 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90, 057901 (2003)

    Article  ADS  Google Scholar 

  21. Wei, J.H., Dai, H.Y., Zhang, M.: Two efficient schemes for probabilistic remote state preparation and the combination of both schemes. Quantum Inf. Process. 13, 2115 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Li, X.H., Ghose, S.: Optimal joint remote state preparation of equatorial states. Quantum Inf. Process. 14, 4585 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Wei, J.H., Shi, L., Xue, Y., Xu, Z.Y., Jiang, J.: Deterministic remote preparation of arbitrary multi-qubit equatorial states via two-qubit entangled states. Quantum Inf. Process. 17, 70 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Zhang, D., Zha, X.W., Duan, Y.J., Yang, Y.Q.: Deterministic controlled bidirectional remote state preparation via a six-qubit entangled state. Quantum Inf. Process. 15, 2169 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Dai, H.Y., Chen, P.X., Zhang, M., Li, C.Z.: Remote preparation of an entangled two-qubit state with three parties. Chin. Phys. B 17, 27 (2008)

    Article  ADS  Google Scholar 

  26. Peng, X., Zhu, X., Fang, X., Feng, M., Liu, M., Gao, K.: Experimental implementation of remote state preparartion by nucler magtic resonance. Phys. Lett. A 306, 271 (2003)

    Article  ADS  Google Scholar 

  27. Xiang, G.Y., Li, J., Bo, Y., Guo, G.C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A 72, 012315 (2005)

    Article  ADS  Google Scholar 

  28. Rosenfeld, W., Berner, S., Volz, J., Weber, M., Weinfurter, H.: Remote preparation of an atomic quantum memory. Phys. Rev. Lett. 98, 050504 (2007)

    Article  ADS  Google Scholar 

  29. Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Remote preparation of single-photon hybrid entangled and vector-polarization states. Phys. Rev. Lett. 105, 030407 (2010)

    Article  ADS  Google Scholar 

  30. Jiang, M., Dong, D.Y.: A recursive two-phase general protocol on deterministic remote preparation of a class of multi-qubit states. J. Phys. B 45, 205506 (2012)

    Article  ADS  Google Scholar 

  31. Kang, P., Dai, H.Y., Wei, J.H., Zhang, M.: Optimal quantum cloning based on the maximin principle by using a priori information. Phys. Rev. A 94, 042304 (2016)

    Article  ADS  Google Scholar 

  32. Wei, J.H., Shi, L., Ma, L.H., Xue, Y., Zhuang, X.C., Li, X.S., Kang, Q.Y.: Remote preparation of an arbitrary multi-qubit state via two-qubit entangled states. Quantum Inf. Process. 16, 260 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Zheng, S.B., Guo, G.C.: Teleportation of atomic states within cavities in thermal states. Phys. Rev. A 63, 044302 (2001)

    Article  ADS  Google Scholar 

  34. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the Program for National Natural Science Foundation of China (Grant Nos. 61673389, 61703428, 61703420 and 61703422)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiahua Wei or Lei Shi.

Appendix A

Appendix A

Suppose that quantum channel for our proposal is composed of n maximally two-qubit entangled states as follow

$$\begin{aligned} |\Psi \rangle _{jk}=\frac{1}{\sqrt{2}}(|01\rangle +|10\rangle )_{jk} \quad j=1,3,\ldots ,2n-1;~k=j+1.\nonumber \end{aligned}$$

Without loss of generality, the sender Alice and the receiver Bob have particles j and k, respectively. From Eq. (3), we can obtain that the \(2^n\times 2^n\) unitary operation \(U\left[ \Theta ^n_n\right] \). Thus, the whole system composed of n maximally entangled states could be given by

$$\begin{aligned} |\Psi \rangle _{12} \otimes |\Psi \rangle _{34}\cdots |\Psi \rangle _{(2n-1)2n}=\left( \frac{1}{\sqrt{2}} \right) ^n\cdot \sum ^{2^n-1}_{i=0}~~{|\Omega _i\rangle _{13\ldots 2n-1}\otimes |\Omega _i\rangle _{24\ldots 2n}}&\end{aligned}$$

here \(|\Omega _i\rangle \) can be expressed as

$$\begin{aligned}{}[~|\Omega _0\rangle ,~|\Omega _1\rangle \cdots ~|\Omega _{2^n-1}\rangle ]^T=U\left[ \Theta ^n_n\right] ~[~|1\ldots 11\rangle ,~|1\ldots 10\rangle \cdots ~|0\ldots 00\rangle ]^T \end{aligned}$$

It can be found that if the measurement result is \(|\Omega _i\rangle ~(i=0,1,\ldots ,2^n-1)\), particles \((2,4\ldots 2n)\) would collapse into \(|\Omega _i\rangle \). Thus, the original state in Eq. (1) can be reconstructed from \(|\Omega _i\rangle \) by performing some permutation operations on particles \((2,4\ldots 2n)\). The total successful probability of this scheme is equal to one. Similar to \(\ \frac{1}{\sqrt{2}}(|01\rangle +|10\rangle )\) and \(\frac{1}{\sqrt{2}}(|00\rangle +|10\rangle )\), others of Bell states can be used to prepare multi-qubit real-parameter states in a deterministic manner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Shi, L., Luo, J. et al. Optimal remote preparation of arbitrary multi-qubit real-parameter states via two-qubit entangled states. Quantum Inf Process 17, 141 (2018). https://doi.org/10.1007/s11128-018-1905-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1905-y

Keywords

Navigation