Skip to main content
Log in

Cyclic joint remote state preparation in noisy environment

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a scheme of cyclic joint remote state preparation for three sides, which takes advantage of three GHZ states to compose product state as quantum channel. Suppose there are six legitimate participants, says Alice, Bob, Charlie, David, Emma and Fred in the scheme. It can be shown that Alice and David can remotely prepare a single-qubit state on Bob’s side; meanwhile, Bob and Emma can remotely prepare a desired quantum state on Charlie’s side, and Charlie and Fred can also remotely prepare a single-qubit state on Alice’s side at the same time. Further, it can be achieved in the opposite direction of the cycle by changing the quantum channel. Based on it, we generalize this protocol to \(N (N\ge 3)\) sides utilizing three multi-qubit GHZ-type states as quantum channel. Therefore, the scheme can achieve cyclic joint remote state preparation, which remotely prepares N states in quantum network with N-party, simultaneously. In addition, we consider that the effect of amplitude-damping noise of the initial states is prepared in four different laboratory. Clearly, we use fidelity to describe how much information has been lost in the cyclic process. Our investigation about the effect of noise shows that the preparing of the initial state in different laboratories will affect the loss of information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crepeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Wang, X.J., An, L.X., Yu, X.T., et al.: Multilayer quantum secret sharing based on GHZ state and generalized Bell basis measurement in multiparty agents. Phys. Lett. A 381(38), 3282–3288 (2017)

    Article  ADS  Google Scholar 

  4. Bai, C.M., Li, Z.H., Xu, T.T., et al.: A generalized information theoretical model for quantum secret sharing. Int. J. Theor. Phys. 55(11), 4972–4986 (2016)

    Article  MATH  Google Scholar 

  5. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58(6), 4394 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  6. Pathak, A., Banerjee, A.: Efficient quantum circuits for perfect and controlled teleportation of \(n\)-qubit non-maximally entangled states of generalized Bell-type. Int. J. Quantum. Inf. 9(supp01), 389–403 (2011)

    Article  MATH  Google Scholar 

  7. Li, W., Zha, X.W., Qi, J.X.: Tripartite quantum controlled teleportation via seven-qubit cluster state. Int. J. Theor. Phys. 55(9), 3927–3933 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wang, X.W., Xia, L.X., Wang, Z.Y., et al.: Hierarchical quantum-information splitting. Opt. Commun. 283(6), 1196–1199 (2010)

    Article  ADS  Google Scholar 

  9. Shukla, C., Pathak, A.: Hierarchical quantum communication. Phys. Lett. A 377(19), 1337–1344 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Huelga, S.F., Vaccaro, J.A., Chefles, A., et al.: Quantum remote control: teleportation of unitary operations. Phys. Rev. A 63(4), 042303 (2001)

    Article  ADS  MATH  Google Scholar 

  11. Zha, X.W., Zou, Z.C., Qi, J.X., et al.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theor. Phys. 52(6), 1740–1744 (2013)

    Article  MathSciNet  Google Scholar 

  12. Zha, X.W., Song, H.Y., Ma, G.L.: Bidirectional swapping quantum controlled teleportation based on maximally entangled five-qubit state (2010). arXiv preprint arXiv:1006.0052

  13. Shukla, C., Banerjee, A., Pathak, A.: Bidirectional controlled teleportation by using 5-qubit states: a generalized view. Int. J. Theor. Phys. 52(10), 3790–3796 (2013)

    Article  Google Scholar 

  14. Duan, Y.J., Zha, X.W., Sun, X.M., et al.: Bidirectional quantum controlled teleportation via a maximally seven-qubit entangled state. Int. J. Theor. Phys. 53(8), 2697–2707 (2014)

    Article  MATH  Google Scholar 

  15. Duan, Y.J., Zha, X.W.: Bidirectional quantum controlled teleportation via a six-qubit entangled state. Int. J. Theor. Phys. 53(11), 3780–3786 (2014)

    Article  MATH  Google Scholar 

  16. Chen, Y.: Bidirectional quantum controlled teleportation by using a genuine six-qubit entangled state. Int. J. Theor. Phys. 54(1), 269–272 (2015)

    Article  MATH  Google Scholar 

  17. Fu, H.Z., Tian, X.L., Hu, Y.: A general method of selecting quantum channel for bidirectional quantum teleportation. Int. J. Theor. Phys. 53(6), 1840–1847 (2014)

    Article  MATH  Google Scholar 

  18. Yan, A.: Bidirectional controlled teleportation via six-qubit cluster state. Int. J. Theor. Phys. 52(11), 3870–3873 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, Y., Nie, L.: Bidirectional controlled teleportation by using a five-qubit composite GHZ-Bell state. Int. J. Theor. Phys. 52(5), 1630–1634 (2013)

    Article  MathSciNet  Google Scholar 

  20. Li, Y.H., Li, X.L., Sang, M.H., et al.: Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state. Quantum Inf. Process. 12(12), 3835–3844 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Sang, Z.: Bidirectional controlled quantum information transmission by using a five-qubit cluster state. Int. J. Theor. Phys. 56(11), 3400–3404 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zadeh, M.S.S., Houshmand, M., Aghababa, H.: Bidirectional quantum teleportation of a class of \(n\)-qubit states by using \((2n+ 2)\)-qubit entangled states as quantum channel. Int. J. Theor. Phys. 57(1), 175–183 (2018)

    Article  MATH  Google Scholar 

  23. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62(1), 012313 (2000)

    Article  ADS  Google Scholar 

  24. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63(1), 014302 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  25. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., et al.: Remote state preparation. Phys. Rev. Lett. 87(7), 077902 (2001)

    Article  ADS  Google Scholar 

  26. Ma, S.Y., Chen, X.B., Luo, M.X., et al.: Remote preparation of a four-particle entangled cluster-type state. Opt. Commun. 284(16), 4088–4093 (2011)

    Article  ADS  Google Scholar 

  27. Sharma, V., Shukla, C., Banerjee, S., et al.: Controlled bidirectional remote state preparation in noisy environment: a generalized view. Quantum Inf. Process. 14(9), 3441–3464 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Zhang, P., Li, X., Ma, S.Y., et al.: Deterministic remote state preparation via the \(|\chi \rangle \) state. Commun. Theor. Phys. 67(5), 498 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  29. Zhang, Y.G., Dou, G., Zha, X.W.: Controlled remote state preparation of an arbitrary two-qubit state by using two sets of four-qubit GHZ states. Int. J. Theor. Phys. 57(2), 506–515 (2018)

    Article  MathSciNet  Google Scholar 

  30. Wang, D., Ye, L.: Joint remote preparation of a class of four-qubit cluster-like states with tripartite entanglements and positive operator-valued measurements. Int. J. Theor. Phys. 52(9), 3075–3085 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Chen, Q.Q., Xia, Y., An, N.B.: Flexible deterministic joint remote state preparation with a passive receiver. Phys. Scr. 87(2), 025005 (2013)

    Article  ADS  MATH  Google Scholar 

  32. Adepoju, A.G., Falaye, B.J., Sun, G.H., et al.: Joint remote state preparation (JRSP) of two-qubit equatorial state in quantum noisy channels. Phys. Lett. A 381(6), 581–587 (2017)

    Article  ADS  Google Scholar 

  33. Lv, S.X., Zhao, Z.W., Zhou, P.: Multiparty-controlled joint remote preparation of an arbitrary \(m\)-qudit state with \(d\)-dimensional Greenberger–Horne–Zeilinger states. Int. J. Theor. Phys. 57(1), 148–158 (2018)

    Article  MATH  Google Scholar 

  34. Wang, D., Ye, L.: Multiparty-controlled joint remote state preparation. Quantum Inf. Process. 12(10), 3223–3237 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Bidirectional controlled joint remote state preparation. Quantum Inf. Process. 14(11), 4263–4278 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Zhang, D., Zha, X., Duan, Y., et al.: Deterministic controlled bidirectional remote state preparation via a six-qubit entangled state. Quantum Inf. Process. 15(5), 2169–2179 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Wang, X.Y., Mo, Z.W.: Bidirectional controlled joint remote state preparation via a seven-qubit entangled state. Int. J. Theor. Phys. 56(4), 1052–1058 (2017)

    Article  MATH  Google Scholar 

  38. Guan, X.W., Chen, X.B., Wang, L.C., et al.: Joint remote preparation of an arbitrary two-qubit state in noisy environments. Int. J. Theor. Phys. 53(7), 2236–2245 (2014)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 11671284), Sichuan Provincial Natural Science Foundation of China (Grant Nos. 2015JY0002, 2017JY0197) and the Research Foundation of the Education Department of Sichuan Province (Grant No. 15ZA0032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-qiang Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Cy., Bai, Mq. & Zhou, Sq. Cyclic joint remote state preparation in noisy environment. Quantum Inf Process 17, 146 (2018). https://doi.org/10.1007/s11128-018-1917-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1917-7

Keywords

Navigation