Skip to main content
Log in

Teleportation of quantum resources and quantum Fisher information under Unruh effect

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Considering a pair of Unruh–DeWitt detectors, when one of them is kept inertial and the other one is accelerated and coupled to a scalar field, we address the teleportation of a two-qubit entangled state \( \left( |\psi _\mathrm{in}\rangle =\text {cos}~\theta /2 |10\rangle +e^{i\varphi }~\text {sin}~\theta /2 |01\rangle \right) \) through the quantum channel created by the above system and investigate how thermal noise induced by Unruh effect affects the quantum resources and quantum Fisher information (QFI) teleportation. Our results showed while the teleported quantum resources and QFI with respect to phase parameter \( \varphi \) \(\left( F_{\text {out}}\left( \varphi \right) \right) \) reduce with increasing acceleration and effective coupling, QFI with respect to weight parameter \( \theta \) \(\left( F_{\text {out}}\left( \theta \right) \right) \) interestingly increases after a specified value of acceleration and effective coupling. We also find that the teleported quantum resources and the precision of estimating phase parameter \( \varphi \) can be improved by a more entangled input state and more entangled channel. Moreover, the precision of estimating weight parameter \( \theta \) increases for a maximally entangled input state only in large acceleration regime, while it does not change considerably for both maximally and partially entangled states of the channel. The influence of Unruh effect on fidelity of teleportation is also investigated. We showed that for small effective coupling the average fidelity is always larger than \( \frac{2}{3} \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D 14(4), 870–892 (1976)

    Article  ADS  Google Scholar 

  2. Birrell, N.D., Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1984)

    MATH  Google Scholar 

  3. Landulfo, A.G.S., Matsas, G.E.A.: Sudden death of entanglement and teleportation fidelity loss via the Unruh effect. Phys. Rev. A 80(3), 032315 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  4. Ahmadi, M., Lorek, K., Chciska, A., Smith, A.R.H., Mann, R.B., Dragan, A.: Effect of relativistic acceleration on localized two-mode Gaussian quantum states. Phys. Rev. D 93(12), 124031 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  5. Qiang, W.-C., Zhang, L.: Geometric measure of quantum discord for entanglement of Dirac fields in noninertial frames. Phys. Lett. B 742, 383–389 (2015)

    Article  ADS  MATH  Google Scholar 

  6. Doukas, J., Brown, E.G., Dragan, A., Mann, R.B.: Entanglement and discord: accelerated observations of local and global modes. Phys. Rev. A 87(1), 012306 (2013)

    Article  ADS  Google Scholar 

  7. Yao, Y., Xiao, X., Ge, L., Wang, X.-G.: Sun, C-p: Quantum Fisher information in noninertial frames. Phys. Rev. A 89(4), 042336 (2014)

    Article  ADS  Google Scholar 

  8. Huang, C.Y., Ma, W., Wang, D., Ye, L.: How the relativistic motion affect quantum Fisher information and Bell non-locality for multipartite state. Sci. Rep. 7, 38456 (2017)

    Article  ADS  Google Scholar 

  9. Evangelisti, S.: Quantum Correlations in Field Theory and Integrable Systems. Minkowski Institute Press, Montreal (2013)

    Google Scholar 

  10. Budroni, C.: Temporal Quantum Correlations and Hidden Variable Models. Springer, Berlin (2015)

    Google Scholar 

  11. Hauke, P., Heyl, M., Tagliacozzo, L., Zoller, P.: Measuring multipartite entanglement through dynamic susceptibilities. Nat. Phys. 12, 778–782 (2016)

    Article  Google Scholar 

  12. Islam, R., Ma, R., Preiss, P.M., Eric Tai, M., Lukin, A., Rispoli, M., Greiner, M.: Measuring entanglement entropy in a quantum many-body system. Nature 528, 77–83 (2015)

    Article  ADS  Google Scholar 

  13. Riebe, M., Hffner, H., Roos, C.F., Hnsel, W., Benhelm, J., Lancaster, G.P.T., Krber, T.W., Becher, C., Schmidt-Kaler, F., James, D.F.V., Blatt, R.: Deterministic quantum teleportation with atoms. Nature 429, 734737 (2004)

    Article  Google Scholar 

  14. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)

    Article  ADS  MATH  Google Scholar 

  15. Terhal, B.M.: Quantum Dense Coding. Encyclopedia of Algorithms, pp. 703–705. Springer, Berlin (2008)

  16. Zheng, S.-B.: Quantum-information processing and multiatom-entanglement engineering with a thermal cavity. Phys. Rev. A 66(6), 060303 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  17. Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature 404, 247–255 (2000)

    Article  ADS  MATH  Google Scholar 

  18. Monroe, C.: Quantum information processing with atoms and photons. Nature 416, 238–246 (2002)

    Article  ADS  Google Scholar 

  19. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88(1), 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  20. Dillenschneider, R.: Quantum discord and quantum phase transition in spin chains. Phys. Rev. B 78(22), 224413 (2008)

    Article  ADS  Google Scholar 

  21. Tian, Z., Wang, J., Jing, J.: Nonlocality and entanglement via the Unruh effect. Ann. Phys. 332, 98–109 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Wang, J., Tian, Z., Jing, J., Fan, H.: Quantum metrology and estimation of Unruh effect. Sci. Rep. 4, 7195 (2014)

    Article  ADS  Google Scholar 

  23. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)

    MATH  Google Scholar 

  24. Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory. Scuola Normale Superiore, Pisa (2011)

    Book  MATH  Google Scholar 

  25. Rangani Jahromi, H., Amniat-Talab, M.: Geometric phase, entanglement, and quantum Fisher information near the saturation point. Ann. Phys. 355, 299–312 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Lu, X.-M., Wang, X., Sun, C.P.: Quantum Fisher information flow and non-Markovian processes of open systems. Phys. Rev. A 82(4), 042103 (2010)

    Article  ADS  Google Scholar 

  27. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photonics 5, 222–229 (2011)

    Article  ADS  Google Scholar 

  28. Berrada, K.: Non-Markovian effect on the precision of parameter estimation. Phys. Rev. A 88(3), 035806 (2013)

    Article  ADS  Google Scholar 

  29. Luo, S.: Quantum fisher information and uncertainty relations. Lett. Math. Phys. 53(3), 243–251 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Frieden, B.R., Press, C.U.: Physics from Fisher Information: A Unification. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  31. Giulini, D., Joos, E., Kiefer, C., Kupsch, J., Stamatescu, I.O., Zeh, H.D.: Decoherence and the Appearance of a Classical World in Quantum Theory. Springer, Berlin (2013)

    MATH  Google Scholar 

  32. Khaetskii, A.V., Loss, D., Glazman, L.: Electron spin decoherence in quantum dots due to interaction with nuclei. Phys. Rev. Lett. 88(18), 186802 (2002)

    Article  ADS  Google Scholar 

  33. Buttiker, M.: Role of quantum coherence in series resistors. Phys. Rev. B 33(5), 3020–3026 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  34. Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113(17), 170401 (2014)

    Article  ADS  Google Scholar 

  35. Wang, J., Tian, Z., Jing, J., Fan, H.: Irreversible degradation of quantum coherence under relativistic motion. Phys. Rev. A 93(6), 062105 (2016)

    Article  ADS  Google Scholar 

  36. Altintas, F., Eryigit, R.: Creation of quantum correlations between two atoms in a dissipative environment from an initial vacuum state. Phys. Lett. A 376(22), 1791–1796 (2012)

    Article  ADS  Google Scholar 

  37. Xi, Z., Li, Y., Fan, H.: Quantum coherence and correlations in quantum system. Sci. Rep. 5, 10922 (2015)

    Article  ADS  Google Scholar 

  38. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113(14), 140401 (2014)

    Article  ADS  Google Scholar 

  39. Shao, L.-H., Xi, Z., Fan, H., Li, Y.: Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A 91(4), 042120 (2015)

    Article  ADS  Google Scholar 

  40. Jin, Y.: The effects of vacuum fluctuations on teleportation of quantum Fisher information. Sci. Rep. 7, 40193 (2017)

    Article  ADS  Google Scholar 

  41. Pfaff, W., Hensen, B.J., Bernien, H., van Dam, S.B., Blok, M.S., Taminiau, T.H., Tiggelman, M.J., Schouten, R.N., Markham, M., Twitchen, D.J., Hanson, R.: Unconditional quantum teleportation between distant solid-state quantum bits. Science 345(6196), 532–535 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Takesue, H., Dyer, S.D., Stevens, M.J., Verma, V., Mirin, R.P., Nam, S.W.: Quantum teleportation over 100 km of fiber using highly efficient superconducting nanowire single-photon detectors. Optica 2(10), 832–835 (2015)

    Article  Google Scholar 

  43. Wang, X.-L., Cai, X.-D., Su, Z.-E., Chen, M.-C., Wu, D., Li, L., Liu, N.-L., Lu, C.-Y., Pan, J.-W.: Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516 (2015)

    Article  ADS  Google Scholar 

  44. Bowen, G., Bose, S.: Teleportation as a depolarizing quantum channel, relative entropy, and classical capacity. Phys. Rev. Lett. 87(26), 267901 (2001)

    Article  ADS  Google Scholar 

  45. DÁriano, G.M., Lo Presti, P., Sacchi, M.F.: Bell measurements and observables. Phys. Lett. A 272(1), 32–38 (2000)

  46. Ye, Y., Tongqi, L., Yu-En, L., Qi-Zhong, Y.: Quantum teleportation via a two-qubit Heisenberg XY chain effects of anisotropy and magnetic field. J. Phys. A Math. Gen. 38(14), 3235 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  47. Qin, W., Guo, J.-L.: Quantum correlations and teleportation in heisenberg XX spin chain. Int. J. Theor. Phys. 54(7), 2386–2397 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  48. Grochowski, P.T., Rajchel, G., Kiaka, F., Dragan, A.: Effect of relativistic acceleration on continuous variable quantum teleportation and dense coding. Phys. Rev. D 95(10), 105005 (2017)

    Article  ADS  Google Scholar 

  49. Omkar, S., Banerjee, S., Srikanth, R., Alok, A.K.: The Unruh effect interpreted as a quantum noise channel. Quantum Inf. Comput. 16, 0757 (2016)

    MathSciNet  Google Scholar 

  50. Banerjee, S., Kumar Alok, A., Omkar, S., Srikanth, R.: Characterization of Unruh channel in the context of open quantum systems. J. High Energy Phys. 2017(2), 82 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  51. Lee, J., Kim, M.S.: Entanglement teleportation via Werner states. Phys. Rev. Lett. 84(18), 4236–4239 (2000)

    Article  ADS  Google Scholar 

  52. Xiao, X., Yao, Y., Zhong, W.-J., Li, Y.-L., Xie, Y.-M.: Enhancing teleportation of quantum Fisher information by partial measurements. Phys. Rev. A 93(1), 012307 (2016)

    Article  ADS  Google Scholar 

  53. Banerjee, S., Alok, A.K., Omkar, S.: Quantum Fisher and skew information for Unruh accelerated Dirac qubit. Eur. Phys. J. C (EPJC) 76(8), 437 (2016)

    Article  ADS  Google Scholar 

  54. Unruh, W.G., Wald, R.M.: What happens when an accelerating observer detects a Rindler particle. Phys. Rev. D 29(6), 1047–1056 (1984)

    Article  ADS  Google Scholar 

  55. Penrose, R., Rindler, W.: Spinors and Space-Time: Two-Spinor Calculus and Relativistic Fields, vol. 1. Cambridge University Press, Cambridge (1984)

    Book  MATH  Google Scholar 

  56. Wald, R.M.: Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics. University of Chicago Press, Chicago (1994)

    MATH  Google Scholar 

  57. Céleri, L.C., Landulfo, A.G.S., Serra, R.M., Matsas, G.E.A.: Sudden change in quantum and classical correlations and the Unruh effect. Phys. Rev. A 81(6), 062130 (2010)

    Article  ADS  Google Scholar 

  58. Sabín, C., Peropadre, B., del Rey, M., Martn-Martnez, E.: Extracting past-future vacuum correlations using circuit QED. Phys. Rev. Lett. 109(3), 033602 (2012)

    Article  ADS  Google Scholar 

  59. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80(10), 2245–2248 (1998)

    Article  ADS  MATH  Google Scholar 

  60. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53(4), 2046–2052 (1996)

    Article  ADS  Google Scholar 

  61. Rangani Jahromi, H., Amniat-Talab, M.: Precision of estimation and entropy as witnesses of non-Markovianity in the presence of random classical noises. Ann. Phys. 360, 446–461 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  62. Rangani Jahromi, H.: Relation between quantum probe and entanglement in n-qubit systems within Markovian and non-Markovian environments. J. Mod. Opt. 64(14), 1377–1385 (2017)

    Article  ADS  Google Scholar 

  63. Cheng-Zhi, W., Chun-Xian, L., Liu-Ying, N., Jiang-Fan, L.: Classical correlation and quantum discord mediated by cavity in two coupled qubits. J. Phys. B At. Mol. Opt. Phys. 44(1), 015503 (2011)

  64. Braunstein, S.L., Caves, C.M., Milburn, G.J.: Generalized uncertainty relations: theory, examples, and Lorentz invariance. Ann. Phys. 247(1), 135–173 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Jing, L., Jie, C., Xiao-Xing, J., Xiaoguang, W.: Quantum Fisher information and symmetric logarithmic derivative via anti-commutators. J. Phys. A Math. Theor. 49(27), 275302 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  66. Jozsa, R.: Fidelity for mixed quantum states. J. Mod. Opt. 41(12), 2315–2323 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. Popescu, S.: Bell’s inequalities versus teleportation: What is nonlocality? Phys. Rev. Lett. 72(6), 797–799 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge the financial support of Urmia and Jahrom University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jafarzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafarzadeh, M., Rangani Jahromi, H. & Amniat-Talab, M. Teleportation of quantum resources and quantum Fisher information under Unruh effect. Quantum Inf Process 17, 165 (2018). https://doi.org/10.1007/s11128-018-1922-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1922-x

Keywords

Navigation