Skip to main content
Log in

Controlling the loss of quantum correlations via quantum memory channels

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A generic behavior of quantum correlations during any quantum process taking place in a noisy environment is that they are non-increasing. We have shown that mitigation of these decreases providing relative enhancements in correlations is possible by means of quantum memory channels which model correlated environmental quantum noises. For two-qubit systems subject to mixtures of two-use actions of different decoherence channels we point out that improvement in correlations can be achieved in such way that the input-output fidelity is also as high as possible. These make it possible to create the optimal conditions in realizing any quantum communication task in a noisy environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nielsen, M., Chuang, I.L.: Quantum Computation and Quantum Information, 10 Anniversary edn. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  2. DiVincenzo, D.P.: The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000)

    Article  MATH  Google Scholar 

  3. Plenio, M.B., Virmani, S.: An introduction to entanglement measures. Quantum Inf. Comput. 7(1), 1–51 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  5. Schlosshauer, M.: Decoherence and the Quantum-to-Classical Transition. Springer, Berlin (2008)

    MATH  Google Scholar 

  6. Xu, J.-S., Xu, X.-Y., Li, C.-F., Zhang, C.-J., Zou, X.-B., Guo, G.-C.: Experimental investigation of classical and quantum correlations under decoherence. Nat. Commun. 1, 7 (2010)

    Google Scholar 

  7. Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Rev. Mod. Phys. 86, 1203 (2014)

    Article  ADS  Google Scholar 

  8. Groisman, B., Popescu, S., Winter, A.: Quantum, classical, and total amount of correlations in a quantum state. Phys. Rev. A 72, 032317 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  9. Holevo, A.S.: Quantum Systems, Channels, Information: A Mathematical Introduction. de Gruyter, Berlin (2012)

    Book  MATH  Google Scholar 

  10. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  MATH  Google Scholar 

  12. Werner, R.F., Wolf, M.M.: Bell’s inequalities for states with positive partial transpose. Phys. Rev. A 61, 062102 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  13. Terhal, B.M., Gerd, K., Vollbrecht, K.G.H.: Entanglement of formation for isotropic states. Phys. Rev. Lett. 85, 2625 (2000)

    Article  ADS  Google Scholar 

  14. Rungta, P., Caves, C.M.: Concurrence-based entanglement measures for isotropic states. Phys. Rev. A 67, 012307 (2003)

    Article  ADS  Google Scholar 

  15. Stinespring, W.F.: Positive functions on \(C^*\)-algebras. Proc. Am. Math. Soc. 6, 211–216 (1955)

    MathSciNet  MATH  Google Scholar 

  16. Kraus, K.: Effects and Operations: Fundamental Notions of Quantum Theory. Lecture Notes in Physics. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  17. Macchiavello, C., Palma, G.M.: Entanglement-enhanced information transmission over a quantum channel with correlated noise. Phys. Rev. A 65, 050301(R) (2002)

    Article  ADS  Google Scholar 

  18. Yeo, Y., Skeen, A.: Time-correlated quantum amplitude-damping channel. Phys. Rev. A 67, 064301 (2003)

    Article  ADS  Google Scholar 

  19. For any pure two-qubit state \(\rho =|\psi \rangle \langle \psi |\) the matrix \(T=\rho \tilde{\rho }\) is of the form \(T=\langle \tilde{\psi }|\psi \rangle |\psi \rangle \langle \tilde{\psi }|\) and obeys the equation \(T(T-|\langle \psi |\tilde{\psi }\rangle |^2)=0\). This shows that the only nonzero eigenvalue of \(T\) is \(|\langle \psi |\tilde{\psi }\rangle |^2\) and therefore \(C(\rho )=|\langle \psi |\tilde{\psi }\rangle |\)

  20. Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323(5914), 598 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Yu, T., Eberly, J.H.: Entanglement evolution in a non-Markovian environment. Opt. Commun. 283(5), 676–680 (2010)

    Article  ADS  Google Scholar 

  22. Uhlmann, A.: The transition probability in the state space of a \(*\)-algebra. Rep. Math. Phys. 9(2), 273–279 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Jozsa, R.: Fidelity for mixed quantum states. J. Mod. Opt. 41, 2315–2323 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Schumacher, B.: Sending entanglement through noisy quantum channels. Phys. Rev. A 54, 2614 (1996)

    Article  ADS  Google Scholar 

  25. Macchiavello, C., Palma, G.M., Virmani, S.: Transition behavior in the channel capacity of two-qubit channels with memory. Phys. Rev. A 69, 010303(R) (2004)

    Article  ADS  Google Scholar 

  26. Holevo, A.S.: Quantum coding theorems. Russ. Math. Surv. 53(6), 1295–1331 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Horodecki, M., Shor, P.W., Ruskai, M.B.: Entanglement breaking channels. Rev. Math. Phys. 15, 629 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photonics 5, 222 (2011)

    Article  ADS  Google Scholar 

  29. Dakić, B., Vedral, V., Brukner, Č.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  MATH  Google Scholar 

  30. Werlang, T., Souza, S., Fanchini, F.F., Villas-Bôas, C.J.: Robustness of quantum discord to sudden death. Phys. Rev. A 80, 024103 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Scientific and Technological Research Council of Turkey (TUBITAK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Durgun Duran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duran, D., Verçin, A. Controlling the loss of quantum correlations via quantum memory channels. Quantum Inf Process 17, 164 (2018). https://doi.org/10.1007/s11128-018-1935-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1935-5

Keywords

Navigation