Skip to main content
Log in

Optical response mediated by a two-level system in the hybrid optomechanical system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The optical response is studied in a hybrid nanomechanical system which is that a superconducting qubit is coupled with the mechanical mode. We show that the system displays the phenomena of the coherent perfect photon reflection, transmission, absorption, and synthesis. The qubit–mechanical interaction can lead to significantly modified optical response properties and provide a new interference channel for the optical response and add an additional perfect transmission, reflection, absorption, or synthesis point in such a hybrid system. This work may open up the hybrid optomechanical system as a perfect reflector, transistor, absorber, and synthesizer for the study of optical switch in the future quantum networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F. (eds.): Optomechanics Cavity. Quantum Science and Technology. Springer, Berlin (2014)

    Google Scholar 

  2. Kippenberg, T.J., Vahala, K.J.: Cavity optomechanics: back-action at the mesoscale. Science 321, 1172–1176 (2008)

    Article  ADS  Google Scholar 

  3. Aspelmeyer, M., Meystre, P., Schwab, K.: Quantum optomechanics. Phys. Today 65, 29–35 (2012)

    Article  Google Scholar 

  4. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014)

    Article  ADS  Google Scholar 

  5. Stambaugh, C., Xu, H.T., Kemiktarak, U., Taylor, J., Lawall, J.: From membrane-in-the-middle to mirror-in-the-middle with a high-reflectivity sub-wavelength grating. Ann. Phys. (Berlin) 527, 81–88 (2015)

    Article  ADS  Google Scholar 

  6. Palomaki, T.A., Harlow, J.W., Teufel, J.D., Simmonds, R.W., Lehnert, K.W.: Coherent state transfer between itinerant microwave fields and a mechanical oscillator. Nat. (Lond.) 495, 210–214 (2013)

    Article  ADS  Google Scholar 

  7. Zhang, J., Peng, K.C., Braunstein, S.L.: Quantum-state transfer from light to macroscopic oscillators. Phys. Rev. A 68, 013808 (2003)

    Article  ADS  Google Scholar 

  8. Vitali, D., Gigan, S., Ferreira, A., Bohm, H.R., Tombesi, P., Guerreiro, A., Vedral, V., Zeilinger, A., Aspelmeyer, M.: Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007)

    Article  ADS  Google Scholar 

  9. Bochmann, J., Vainsencher, A., Awschalom, D.D., Cleland, A.N.: Nanomechanical coupling between microwave and optical photons. Nat. Phys. 9, 712–716 (2013)

    Article  Google Scholar 

  10. Andrews, R.W., Peterson, R.W., Purdy, T.P., Cicak, K., Simmonds, R.W., Regal, C.A., Lehnert, K.W.: Bidirectional and efficient conversion between microwave and optical light. Nat. Phys. 10, 321–326 (2014)

    Article  Google Scholar 

  11. Tian, L.: Optoelectromechanical transducer: Reversible conversion between microwave and optical photons. Ann. Phys. (Berlin) 527, 1–14 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  12. Safavi-Naeini, A.H., Groeblacher, S., Hill, J.T., Chan, J., Aspelmeyer, M., Painter, O.: Squeezed light from a silicon micromechanical resonator. Nat. (Lond.) 500, 185–189 (2013)

    Article  ADS  Google Scholar 

  13. Agarwal, G.S., Huang, S.M.: Strong mechanical squeezing and its detection. Phys. Rev. A 93, 043844 (2016)

    Article  ADS  Google Scholar 

  14. Gavartin, E., Verlot, P., Kippenberg, T.J.: A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. Nat. Nanotechnol. 7, 509–514 (2012)

    Article  ADS  Google Scholar 

  15. Basiri-Esfahani, S., Akram, U., Milburn, G.J.: Phonon number measurements using single photon opto-mechanics. New J. Phys. 14, 085017 (2012)

    Article  ADS  Google Scholar 

  16. Xiong, H., Si, L.G., Wu, Y.: Precision measurement of electrical charges in an optomechanical system beyond linearized dynamics. Appl. Phys. Lett. 110, 171102 (2017)

    Article  ADS  Google Scholar 

  17. Santamore, D.H., Doherty, A.C., Cross, M.C.: Quantum nondemolition measurement of Fock states of mesoscopic mechanical oscillators. Phys. Rev. B 70, 144301 (2004)

    Article  ADS  Google Scholar 

  18. Martin, I., Zurek, W.H.: Measurement of energy eigenstates by a slow detector. Phys. Rev. Lett. 98, 120401 (2007)

    Article  ADS  Google Scholar 

  19. Li, J.J., Zhu, K.D.: All-optical mass sensing with coupled mechanical resonator systems. Phys. Rep. 525, 223–254 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  20. Yin, Z.Q., Yang, W.L., Sun, L., Duan, L.M.: Quantum network of superconducting qubits through an optomechanical interface. Phys. Rev. A 91, 012333 (2015)

    Article  ADS  Google Scholar 

  21. Bennett, J.S., Khosla, K., Madsen, L.S., Rubinsztein-Dunlop, H., Bowen, W.P.: A quantum optomechanical interface beyond the resolved sideband limit. New J. Phys. 18, 053030 (2016)

    Article  ADS  Google Scholar 

  22. Fiore, V., Yang, Y., Kuzyk, M.C., Barbour, R., Tian, L., Wang, H.L.: Storing optical information as a mechanical excitation in a silica optomechanical resonator. Phys. Rev. Lett. 107, 133601 (2011)

    Article  ADS  Google Scholar 

  23. Agarwal, G.S., Huang, S.M.: Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A 81, 041803 (2010)

    Article  ADS  Google Scholar 

  24. Weis, S., Rivière, R., Deléglise, S., Gavartin, E., Arcizet, O., Schliesser, A., Kippenberg, T.J.: Optomechanically induced transparency. Science 330, 1520–1523 (2010)

    Article  ADS  Google Scholar 

  25. Jiang, C., Liu, H.X., Cui, Y.S., Li, X.W., Chen, G.B., Chen, B.: Electromagnetically induced transparency and slow light in two-mode optomechanics. Opt. Express 21, 12165–12173 (2013)

    Article  ADS  Google Scholar 

  26. Zhou, X., Hocke, F., Schliesser, A., Marx, A., Huebl, H., Gross, R., Kippenberg, T.J.: Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics. Nat. Phys. 9, 179–184 (2013)

    Article  Google Scholar 

  27. Karuza, M., Biancofiore, C., Bawaj, M., Molinelli, C., Galassi, M., Natali, R., Tombesi, P., Giuseppe, G.D., Vitali, D.: Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature. Phys. Rev. A 88, 013804 (2013)

    Article  ADS  Google Scholar 

  28. Singh, V., Bosman, S.J., Schneider, B.H., Blanter, Y.M., Castellanos-Gomez, A., Steele, G.A.: Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity. Nat. Nanotechnol. 9, 820–824 (2014)

    Article  ADS  Google Scholar 

  29. Shevchuk, O., Singh, V., Steele, G.A., Blanter, Y.M.: Optomechanical response of a nonlinear mechanical resonator. Phys. Rev. B 92, 195415 (2015)

    Article  ADS  Google Scholar 

  30. Xu, X.W., Li, Y.: Controllable optical output fields from an optomechanical system with mechanical driving. Phys. Rev. A 92, 023855 (2015)

    Article  ADS  Google Scholar 

  31. Safavi-Naeini, A.H., Alegre, T.P.M., Chan, J., Eichenfeld, M., Winger, M., Lin, Q., Hill, J.T., Chang, D.E., Painter, O.: Electromagnetically induced transparency and slow light with optomechanics. Nat. (Lond.) 472, 69–73 (2011)

    Article  ADS  Google Scholar 

  32. Jiang, C., Cui, Y.S., Bian, X.T., Zuo, F., Yu, H.L., Chen, G.B.: Phase-dependent multiple optomechanically induced absorption in multimode optomechanical systems with mechanical driving. Phys. Rev. A 94, 023837 (2016)

    Article  ADS  Google Scholar 

  33. Kronwald, A., Marquardt, F.: Optomechanically induced transparency in the nonlinear quantum regime. Phys. Rev. Lett. 111, 133601 (2013)

    Article  ADS  Google Scholar 

  34. Li, W.L., Jiang, Y.F., Li, C., Song, H.S.: Parity-time-symmetry enhanced optomechanically-induced-transparency. Sci. Rep. 6, 31095 (2016)

    Article  ADS  Google Scholar 

  35. Agrwal, G.S., Huang, S.M.: Nanomechanical inverse electromagnetically induced transparency and confinement of light in normal modes. New J. Phys. 16, 033023 (2014)

    Article  ADS  Google Scholar 

  36. Nie, W.J., Chen, A.X., Lan, Y.H.: Optical-response properties in levitated optomechanical systems beyond the low-excitation limit. Phys. Rev. A 93, 023841 (2016)

    Article  ADS  Google Scholar 

  37. Lü, H., Jiang, Y.J., Wand, Y.Z., Jing, H.: Optomechanically induced transparency in a spinning resonator. Photonic Rear. 5, 367–371 (2017)

    Article  Google Scholar 

  38. Liu, Y.C., Li, B.B., Xiao, Y.F.: Electromagnetically induced transparency in optical microcavities. Nanophotonics 6, 789–811 (2017)

    Article  Google Scholar 

  39. Yan, X.B., Cui, C.L., Gu, K.H., Tian, X.D., Fu, C.B., Wu, J.H.: Coherent perfect absorption, transmission, and synthesis in a double-cavity optomechanical system. Opt. Express 22, 4886–4895 (2014)

    Article  ADS  Google Scholar 

  40. Qu, K., Agarwal, G.S.: Phonon-mediated electromagnetically induced absorption in hybrid opto-electromechanical systems. Phys. Rev. A 87, 031802(R) (2013)

    Article  ADS  Google Scholar 

  41. Liu, Y.M., Gao, F., Wang, J., Wu, J.H.: All-optical transistor based on Rydberg atom-assisted optomechanical system. arXiv:1709.04116 (2017)

  42. Wu, Q., Zhang, J.Q., Wu, J.H., Feng, M., Zhang, Z.M.: Tunable multi-channel inverse optomechanically induced transparency and its applications. Opt. Express 23, 18534–18547 (2014)

    Article  ADS  Google Scholar 

  43. Lei, F.C., Gao, M., Du, C.G., Jing, Q.L., Long, G.L.: Three-pathway electromagnetically induced transparency in coupled-cavity optomechanical system. Opt. Express 23, 11508–11517 (2015)

    Article  ADS  Google Scholar 

  44. Geng, Q., Zhu, K.D.: Determination of nonlinear nanomechanical resonator-qubit coupling coefficient in a hybrid quantum system. Appl. Opt. 55, 5358–5361 (2016)

    Article  ADS  Google Scholar 

  45. Restrepo, J., Ciuti, C., Favero, I.: Single-polariton optomechanics. Phys. Rev. Lett. 112, 013601 (2014)

    Article  ADS  Google Scholar 

  46. Sete, E.A., Eleuch, H.: Strong squeezing and robust entanglement in cavity electromechanics. Phys. Rev. A 89, 013841 (2014)

    Article  ADS  Google Scholar 

  47. Akram, M.J., Ghafoor, F., Saif, F.: Electromagnetically induced transparency and tunable fano resonances in hybrid optomechanics. J. Phys. B 48, 065502 (2015)

    Article  ADS  Google Scholar 

  48. Holz, T., Betzholz, R., Bienert, M.: Suppression of Rabi oscillations in hybrid optomechanical systems. Phys. Rev. A 92, 043822 (2015)

    Article  ADS  Google Scholar 

  49. Zhou, B.Y., Li, G.X.: Ground-state cooling of a nanomechanical resonator via single-polariton optomechanics in a coupled quantum-dot-cavity system. Phys. Rev. A 94, 033809 (2016)

    Article  ADS  Google Scholar 

  50. Jia, W.Z., Wang, Z.D.: Single-photon transport in a one-dimensional waveguide coupling to a hybrid atom-optomechanical system. Phys. Rev. A 88, 063821 (2013)

    Article  ADS  Google Scholar 

  51. Xiong, W., Jin, D.Y., Qiu, Y.Y., Lam, C.H., You, J.Q.: Cross-Kerr effect on an optomechanical system. Phys. Rev. A 93, 023844 (2016)

    Article  ADS  Google Scholar 

  52. LaHaye, M.D., Suh, J., Echternach, P.M., Schwab, K.C., Roukes, M.L.: Nanomechanical measurements of a superconducting qubit. Nat. (Lond.) 459, 960–964 (2009)

    Article  ADS  Google Scholar 

  53. Pirkkalainen, J.M., Cho, S.U., Massel, F., Tuorila, J., Heikkilä, T.T., Hakonen, P.J., Sillanpää, M.A.: Cavity optomechanics mediated by a quantum two-level system. Nat. Commun. 6, 6981 (2015)

    Article  Google Scholar 

  54. Restrepo, J., Favero, I., Ciuti, C.: Fully coupled hybrid cavity optomechanics: quantum interferences and correlations. Phys. Rev. A 95, 023832 (2017)

    Article  ADS  Google Scholar 

  55. Wang, H., Gu, X., Liu, Y.X., Miranowicz, A., Nori, F.: Optomechanical analog of two-color electromagnetically induced transparency: photon transmission through an optomechanical device with a two-level system. Phys. Rev. A 90, 023817 (2014)

    Article  ADS  Google Scholar 

  56. Tian, L.: Cavity cooling of a mechanical resonator in the presence of a two-level-system defect. Phys. Rev. B 84, 035417 (2011)

    Article  ADS  Google Scholar 

  57. Ramos, T., Sudhir, V., Stannigel, K., Zoller, P., Kippenberg, T.J.: Nonlinear quantum optomechanics via individual intrinsic two-level defects. Phys. Rev. Lett. 110, 193602 (2013)

    Article  ADS  Google Scholar 

  58. Thompson, J.D., Zwickl, B.M., Jayich, A.M., Marquardt, F., Girvin, S.M., Harris, J.G.E.: Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nat. (Lond.) 452, 72–75 (2008)

    Article  ADS  Google Scholar 

  59. Karuza, M., Biancofiore, C., Bawaj, M., Molinelli, C., Galassi, M., Natali, R., Tombesi, P., Giuseppe, G.D., Vitali, D.: Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature. Phys. Rev. A 88, 013804 (2013)

    Article  ADS  Google Scholar 

  60. Huo, W.Y., Long, G.L.: Entanglement and squeezing in solid-state circuits. New J. Phys. 10, 013026 (2008)

    Article  ADS  MATH  Google Scholar 

  61. Manzoni, C., Mücke, O.D., Cirmi, G., Fang, S.B., Moses, J., Huang, S.W., Hong, K.H., Cerullo, G., Kärtner, F.X.: Coherent pulse synthesis: towards sub-cycle optical waveforms. Laser Photonics Rev. 9, 1–43 (2015)

    Article  Google Scholar 

  62. Hafezi, M., Rabl, P.: Optomechanically induced non-reciprocity in microring resonators. Opt. Express 20, 7672–7684 (2012)

    Article  ADS  Google Scholar 

  63. Yu, Z.F., Fan, S.H.: Complete optical isolation created by indirect interband photonic transitions. Nat. Photonics 3, 91–94 (2009)

    Article  ADS  Google Scholar 

  64. Aplet, L.J., Carson, J.W.: A faraday effect optical isolator. Appl. Opt. 3, 544–545 (1964)

    Article  ADS  Google Scholar 

  65. Lira, H., Yu, Z.F., Fan, S.H., Lipson, M.: Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. Phys. Rev. Lett. 109, 033901 (2012)

    Article  ADS  Google Scholar 

  66. Wan, W.J., Chong, Y.D., Ge, L., Noh, H., Stone, A.D., Cao, H.: Time-reversed lasing and interferometric control of absorption. Science 331, 889–892 (2011)

    Article  ADS  Google Scholar 

  67. Stone, A.D.: Gobbling up light with an antilaser. Phys. Today 64, 68 (2011)

    Article  Google Scholar 

  68. Zanotto, S., et al.: Perfect energy-feeding into strongly coupled systems and interferometric control of polariton absorption. Nat. Phys. 10, 830–834 (2014)

    Article  Google Scholar 

  69. Kang, M., Chong, Y.D.: Coherent optical control of polarization with a critical metasurface. Phys. Rev. A 92, 043826 (2015)

    Article  ADS  Google Scholar 

  70. Huang, S.M., Agarwal, G.S.: Coherent perfect absorption of path entangled single photons. Opt. Express 22, 20936–20947 (2014)

    Article  ADS  Google Scholar 

  71. Chong, Y.D., Ge, L., Cao, H., Stone, A.D.: Coherent perfect absorbers: time-reversed lasers. Phys. Rev. Lett. 105, 053901 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China, under Grant Nos. 11775040, 11375036, and 11704026, the Xinghai Scholar Cultivation Plan, and the Fundamental Research Fund for the Central Universities under Grant No. DUT18LK45.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-shui Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Liu, T., Wu, Sx. et al. Optical response mediated by a two-level system in the hybrid optomechanical system. Quantum Inf Process 17, 209 (2018). https://doi.org/10.1007/s11128-018-1980-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1980-0

Keywords

Navigation