Skip to main content
Log in

New scheme for measurement-device-independent quantum key distribution

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

A Correction to this article was published on 22 November 2018

This article has been updated

Abstract

We propose a new scheme for measurement-device-independent quantum key distribution (MDI-QKD) with a two-mode state source. In this scheme, the trigger state is split into different paths and detected at both senders; thus, four types of detection events can be obtained. Based on these events, the signal state is divided into four non-empty sets that can be used for parameter estimation and key extraction. Additionally, we carry out a performance analysis on the scheme with two-intensity (vacuum state and signal state) heralded single-photon sources. We also numerically study the statistical fluctuation in the actual system. Our simulations show that the error rate and the secure transmission distance of our two-intensity scheme are better than those of existing three- and four-intensity MDI-QKD schemes with different light sources. Considering statistical fluctuations, the maximum secure distance of our scheme can reach 344 km when the data length is 1013 and remains as long as 250 km when the data length is 1010. Moreover, our scheme improves the system performance and reduces the challenges of implementing the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 22 November 2018

    A measurement-device-independent quantum key distribution (MDI-QKD) scheme with passive heralded single-photon sources has previously been published [1], while the two-intensity MDI-QKD scheme with a two-mode source proposed in our paper can been regarded as the extension and further research of the work [1].

References

  1. Bennett C.H., Brassard G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, IEEE, New York, pp. 175–179 (1984)

  2. Gottesman, D., Lo, H.K., Lutkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4, 325 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050 (1999)

    Article  ADS  Google Scholar 

  4. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution. Phys. Rev. Lett. 85, 441–444 (2000)

    Article  ADS  Google Scholar 

  5. Mayers, D.: Unconditional security in quantum cryptography. J. ACM 48, 351–406 (2001)

    Article  MathSciNet  Google Scholar 

  6. Kraus, B., Gisin, N., Renner, R.: Lower and upper bounds on the secret key rate for QKD protocols using one-way classical communication. Phys. Rev. Lett. 95, 080501 (2005)

    Article  ADS  Google Scholar 

  7. Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330 (2000)

    Article  ADS  Google Scholar 

  8. Sun, S.H., Gao, M., Jiang, M.S., Li, C.Y., Liang, L.M.: Partially random phase attack to the practical two-way quantum-key-distribution system. Phys. Rev. A 85, 032304 (2012)

    Article  ADS  Google Scholar 

  9. Qi, B., Fung, C.H.F., Lo, H.K., Ma, X.: Time-shift attack in practical quantum cryptosystems. Quantum Inf. Comput. 7, 73–82 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Fung, C.H.F., Qi, B., Tamaki, K., Lo, H.K.: Phase-remapping attack in practical quantum-key-distribution systems. Phys. Rev. A 75, 032314 (2007)

    Article  ADS  Google Scholar 

  11. Lydersen, L., Wiechers, C., Wittinann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photon. 4, 686–689 (2010)

    Article  ADS  Google Scholar 

  12. Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)

    Article  ADS  Google Scholar 

  13. Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    Article  ADS  Google Scholar 

  14. Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)

    Article  ADS  Google Scholar 

  15. Pironio, S., Acín, A., Brunner, N., Gisin, N., Massar, S., Scarani, V.: Device-independent quantum key distribution secure against collective attacks. New J. Phys. 11, 045021 (2009)

    Article  ADS  Google Scholar 

  16. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  17. Schiavon, M., Vallone, G., Ticozzi, F., Villoresi, P.: Heralded single-photon sources for quantum-key-distribution applications. Phys. Rev. A 93, 012331 (2016)

    Article  ADS  Google Scholar 

  18. Wang, X.B.: Three-intensity decoy-state method for device-independent quantum key distribution with basis-dependent errors. Phys. Rev. A 87, 012320 (2013)

    Article  ADS  Google Scholar 

  19. Zhou, Y.H., Yu, Z.W., Wang, X.B.: Tightened estimation can improve the key rate of measurement-device-independent quantum key distribution by more than 100%. Phys. Rev. A 89, 052325 (2014)

    Article  ADS  Google Scholar 

  20. Zhou, Y.Y., Zhou, X.J., Su, B.B.: A measurement-device-independent quantum key distribution protocol with a heralded single photon source. Optoelectron. Lett. 12, 148–151 (2016)

    Article  ADS  Google Scholar 

  21. Zhou, Y.H., Yu, Z.W., Wang, X.B.: Making the decoy-state measurement-device-independent quantum key distribution practically useful. Phys. Rev. A 93, 042324 (2016)

    Article  ADS  Google Scholar 

  22. Adachi, Y., Yamamoto, T., Koashi, M., Imoto, N.: Simple and efficient quantum key distribution with parametric down-conversion. Phys. Rev. Lett. 99, 180503 (2007)

    Article  ADS  Google Scholar 

  23. Li, Y., Bao, W.S., Li, H.W., Zhou, C., Wang, Y.: Passive decoy-state quantum key distribution using weak coherent pulses with intensity fluctuations. Phys. Rev. A 89, 032329 (2014)

    Article  ADS  Google Scholar 

  24. Shan, Y.Z., Sun, S.H., Ma, X.C., Jiang, M.S., Zhou, Y.L., Liang, L.M.: Measurement-device-independent quantum key distribution with a passive decoy-state method. Phys. Rev. A 90, 042334 (2014)

    Article  ADS  Google Scholar 

  25. Wang, Q., Zhang, C.H., Wang, X.B.: Scheme for realizing passive quantum key distribution with heralded single-photon sources. Phys. Rev. A 93, 032312 (2016)

    Article  ADS  Google Scholar 

  26. Ma, X., Lo, H.K.: Quantum key distribution with triggering parametric down-conversion sources. New J. Phys. 10, 073018 (2008)

    Article  ADS  Google Scholar 

  27. Koashi, M., Preskill, J.: Secure quantum key distribution with an uncharacterized source. Phys. Rev. Lett. 90, 057902 (2003)

    Article  ADS  Google Scholar 

  28. Ma, X., Fung, C.H.F., Lo, H.K.: Quantum key distribution with entangled photon sources. Phys. Rev. A 76, 012307 (2007)

    Article  ADS  Google Scholar 

  29. Sun, Q.C., Wang, W.L., Liu, Y., Zhou, F., Pelc, J.S., Fejer, M.M., Peng, C.Z., Chen, X.F., Ma, X., Zhang, Q., Pan, J.W.: Experimental passive decoy-state quantum key distribution. Laser Phys. Lett. 11, 085202 (2014)

    Article  ADS  Google Scholar 

  30. Curty, M., Ma, X., Qi, B., Moroder, T.: Passive decoy state quantum key distribution with practical light sources. Phys. Rev. A 81, 022310 (2010)

    Article  ADS  Google Scholar 

  31. Lütkenhaus, N.: Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61, 052304 (2000)

    Article  ADS  Google Scholar 

  32. Mori, S., Soderholm, J., Namekata, N., Inoue, S.: On the distribution of 1550-nm photon pairs efficiently generated using a periodically poled lithium niobate waveguide. Opt. Commun. 264, 156–162 (2006)

    Article  ADS  Google Scholar 

  33. Ribordy, G., Brendel, J., Gauthier, J.D., Gisin, N., Zbinden, H.: Long-distance entanglement-based quantum key distribution. Phys. Rev. A 63, 012309 (2000)

    Article  ADS  Google Scholar 

  34. Wang, Q., Wang, X.B.: Efficient implementation of the decoy-state measurement-device-independent quantum key distribution with heralded single-photon sources. Phys. Rev. A 88, 052332 (2013)

    Article  ADS  Google Scholar 

  35. Wang, Q., Wang, X.B.: Simulating of the measurement-device-independent quantum key distribution with phase randomized general sources. Sci. Rep. 4, 4612 (2014)

    Article  ADS  Google Scholar 

  36. Yu, Z.W., Zhou, Y.H., Wang, X.B.: Three-intensity decoy-state method for measurement-device-independent quantum key distribution. Phys. Rev. A 88, 062339 (2013)

    Article  ADS  Google Scholar 

  37. Curty, M., Xu, F., Cui, W., Lim, C.C.W., Tamaki, K., Lo, H.K.: Finite-key analysis for measurement-device-independent quantum key distribution. Nat. Commun. 5, 3732 (2014)

    Article  ADS  Google Scholar 

  38. Zhang, Z., Zhao, Q., Razavi, M., Ma, X.: Improved key-rate bounds for practical decoy-state quantum-key-distribution systems. Phys. Rev. A 95, 012333 (2017)

    Article  ADS  Google Scholar 

  39. Zhang, C.H., Luo, S.L., Guo, G.C., Wang, Q.: Approaching the ideal quantum key distribution with two-intensity decoy states. Phys. Rev. A 92, 022332 (2015)

    Article  ADS  Google Scholar 

  40. Sun, S.H., Gao, M., Li, C.Y., Liang, L.M.: Practical decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 87, 052329 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China through Grant No. 61302099.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Yuan Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhou, YY., Zhou, XJ. et al. New scheme for measurement-device-independent quantum key distribution. Quantum Inf Process 17, 231 (2018). https://doi.org/10.1007/s11128-018-1991-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1991-x

Keywords

Navigation