Skip to main content
Log in

Purification of the concatenated Greenberger–Horne–Zeilinger state with linear optics

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Logic qubit plays an important role in quantum computation. Recent research showed that logic qubit entanglement can be used in long-distance quantum communication. In this paper, we describe an entanglement purification protocol (EPP) for one type of logic qubit entanglement, named concatenated Greenberger–Horne–Zeilinger(C-GHZ) state. Not only the logic bit-flip and phase-flip errors in the C-GHZ state but also the single physical qubit bit-flip and phase-flip errors in the logic qubit can be purified. This EPP does not require the sophisticated controlled-not gate, but only requires some feasible linear optical elements, which is feasible in the current experimental condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  3. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  4. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  5. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  6. Hu, J.Y., Yu, B., Jing, M.Y., Xiao, L.T., Jia, S.T., Qin, G.Q., Long, G.L.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144 (2016)

    Article  Google Scholar 

  7. Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)

    Article  ADS  Google Scholar 

  8. Zhu, F., Zhang, W., Sheng, Y.B., Huang, Y.D.: Experimental long-distance quantum secret direct communication. Sci. Bull. 62, 1519 (2017)

    Article  Google Scholar 

  9. Gou, Y.T., Shi, H.L., Wang, X.H., Liu, S.Y.: Probabilistic resumable bidirectional quantum teleportation. Quantum Inf. Process. 16, 278 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  10. He, Y.F., Ma, W.P.: Three-party quantum secure direct communication against collective noise. Quantum Inf. Process. 16, 252 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  11. Wu, F.Z., Yang, G.J., Wang, H.B., Xiong, J., Alzahrani, F., Hobiny, A., Deng, F.G.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. China Phys. Mech. Astron. 60, 120313 (2017)

    Article  ADS  Google Scholar 

  12. Qin, H.W., Tang, W.K.S., Tso, R.: Establishing rational networking using the DL04 quantum secure direct communication protocol. Quantum Inf. Process. 17, 152 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  13. Chen, S.S., Zhou, L., Zhong, W., Sheng, Y.B.: Three-step three-party quantum secure direct communication. Sci. China Phys. Mech. Astron. 61, 090312 (2018)

    Article  Google Scholar 

  14. Sheng, Y.B., Zhou, L.: Distributed secure quantum machine learning. Sci. Bull. 62, 1025 (2017)

    Article  Google Scholar 

  15. Jiang, Y.X., Guo, P.L., Gao, C.Y., Wang, H.B., Alzahrani, F., Hobiny, A., Deng, F.G.: Self-error-rejecting photonic qubit transmission in polarization-spatial modes with linear optical elements. Sci. China Phys. Mech. Astron. 60, 120312 (2017)

    Article  ADS  Google Scholar 

  16. Shao, X.Q., Zheng, T.Y., Zhang, S.: Engineering steady three-atom singlet via quantum-jump-based feedback. Phys. Rev. A 85, 042308 (2012)

    Article  ADS  Google Scholar 

  17. Shao, X.Q., Zheng, T.Y., Oh, C.H., Zhang, S.: Dissipative creation of three-dimensional entangled state in optical cavity via spontaneous emission. Phys. Rev. A 89, 012319 (2014)

    Article  ADS  Google Scholar 

  18. Shao, X.Q., You, J.B., Zheng, T.Y., Oh, C.H., Zhang, S.: Stationary three-dimensional entanglement via dissipative Rydberg pumping. Phys. Rev. A 89, 052313 (2014)

    Article  ADS  Google Scholar 

  19. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  20. Deutsch, D., et al.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818 (1996)

    Article  ADS  Google Scholar 

  21. Pan, J.W., Simon, C., Brukner, Č., Zeilinger, A.: Entanglement purification for quantum communication. Nature 410, 1067–1070 (2001)

    Article  ADS  Google Scholar 

  22. Düer, W., Briegel, H.J., Cirac, J.I., Zoller, P.: Quantum repeaters based on entanglement purification. Phys. Rev. A 59, 169 (1999)

    Article  ADS  Google Scholar 

  23. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity. Phys. Rev. A 77, 042308 (2008)

    Article  ADS  Google Scholar 

  24. Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010)

    Article  ADS  Google Scholar 

  25. Sheng, Y.B., Deng, F.G.: One-step deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82, 044305 (2010)

    Article  ADS  Google Scholar 

  26. Zwerger, M., Briegel, H.J., Dür, W.: Universal and optimal error thresholds for measurement-based entanglement purification. Phys. Rev. Lett. 110, 260503 (2013)

    Article  ADS  Google Scholar 

  27. Zwerger, M., Briegel, H.J., Dür, W.: Robust of hashing protocols for entanglement purification. Phys. Rev. A 90, 012314 (2014)

    Article  ADS  Google Scholar 

  28. Bombin, H., Martin-Delgado, M.A.: Entanglement distillation protocols and number theory. Phys. Rev. A 72, 032313 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  29. Simon, C., Pan, J.W.: Polarization entanglement purification using spatial entanglement. Phys. Rev. Lett. 89, 257901 (2002)

    Article  ADS  Google Scholar 

  30. Li, X.H.: Deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82, 044304 (2010)

    Article  ADS  Google Scholar 

  31. Deng, F.G.: One-step error correction for multipartite polarization entanglement. Phys. Rev. A 83, 062316 (2011)

    Article  ADS  Google Scholar 

  32. Deng, F.G.: Efficient multipartite entanglement purification with the entanglement link from a subspace. Phys. Rev. A 84, 052312 (2011)

    Article  ADS  Google Scholar 

  33. Sheng, Y.B., Zhou, L., Long, G.L.: Hybrid entanglement purification for quantum repeaters. Phys. Rev. A 88, 022302 (2013)

    Article  ADS  Google Scholar 

  34. Sheng, Y.B., Zhou, L.: Deterministic polarization entanglement purification using time-bin entanglement. Laser Phys. Lett. 11, 085203 (2014)

    Article  ADS  Google Scholar 

  35. Sheng, Y.B., Zhou, L.: Deterministic entanglement distillation for secure double-server blind quantum computation. Sci. Rep. 5, 7815 (2015)

    Article  Google Scholar 

  36. Martín-Delgado, M.A., Navascués, M.: Single-step distillation protocol with generalized beam splitters. Phys. Rev. A 68, 012322 (2003)

    Article  ADS  Google Scholar 

  37. Zhang, H., Liu, Q., Xu, X.S., Xiong, J., Alsaedi, A., Hayat, T., Deng, F.G.: Polarization entanglement purification of nonlocal microwave photons based on the cross-Kerr effect in circuit QED. Phys. Rev. A 96, 052330 (2017)

    Article  ADS  Google Scholar 

  38. Zhang, H., Alsaedi, A., Hayat, T., Deng, F.G.: Entanglement concentration and purification of two-mode squeezed microwave photons in circuit QED. Ann. Phys. 391, 112–119 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  39. Wang, C., Zhang, Y., Jin, G.S.: Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities. Phys. Rev. A 84, 032307 (2011)

    Article  ADS  Google Scholar 

  40. Wang, C., Zhang, Y., Zhang, R.: Entanglement purification based on hybrid entangled state using quantum-dot and microcavity coupled system. Opt. Exp. 19, 25685–25695 (2011)

    Article  ADS  Google Scholar 

  41. Gao, W.C., Cao, C., Wang, T.J., Wang, C.: Efficient purification and concentration for Lambda-type three-level entangled quantum dots using non-reciprocal microresonators. Quantum Inf. Process. 16, 182 (2017)

    Article  ADS  Google Scholar 

  42. Liu, Z.C., Hong, J.S., Guo, J.J., Li, T., Ai, Q., Alsaedi, A., Hayat, T., Deng, F.G.: Entanglement purification of nonlocal quantum-dot-confined electrons assisted by double-sided optical microcavities. Ann. Phys. 530, 1800029 (2018)

    Article  MathSciNet  Google Scholar 

  43. Gonta, D., van Loock, P.: Dynamical entanglement purification using chains of atoms and optical cavities. Phys. Rev. A 84, 042303 (2011)

    Article  ADS  Google Scholar 

  44. Gonta, D., van Loock, P.: High-fidelity entanglement purification using chains of atoms and optical cavities. Phys. Rev. A 86, 052312 (2012)

    Article  ADS  Google Scholar 

  45. Yang, M., Song, W., Cao, Z.L.: Entanglement purification for arbitrary unknown ionic states via linear optics. Phys. Rev. A 71, 012308 (2005)

    Article  ADS  Google Scholar 

  46. Ren, B.C., Du, F.F., Deng, F.G.: Two-step hyperentanglement purification with the quantum-state-joining method. Phys. Rev. A 90, 052309 (2014)

    Article  ADS  Google Scholar 

  47. Wang, G.Y., Liu, Q., Deng, F.G.: Efficient hyperentanglement purification for two-photon six-qubit quantum systems. Phys. Rev. A 94, 032319 (2016)

    Article  ADS  Google Scholar 

  48. Wang, T.J., Mi, S.C., Wang, C.: Hyperentanglement purification using imperfect spatial entanglement. Opt. Exp. 25, 2969–2982 (2017)

    Article  ADS  Google Scholar 

  49. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995)

    Article  ADS  Google Scholar 

  50. Laflamme, R., Miquel, C., Paz, J.P., Zurek, W.: Pefect quantum error correction code. Phys. Rev. Lett. 77, 198 (1996)

    Article  ADS  Google Scholar 

  51. Steane, A.M., Ibinson, B.: Fault-tolerant logical gate networks for Calderbank–Shor–Steane codes. Phys. Rev. A. 72, 052335 (2005)

    Article  ADS  Google Scholar 

  52. Weinstein, Y.S., Buchbinder, S.D.: Use of Shor states for the [7, 1, 3] quantum error-correcting code. Phys. Rev. A 86, 052336 (2012)

    Article  ADS  Google Scholar 

  53. Muralidharan, S., Zou, C.L., Li, L., Wen, J., Jiang, L.: Overcoming erasure errors with multilevel systems. New J. Phys. 19, 013026 (2017)

    Article  ADS  Google Scholar 

  54. Jiang, L., Taylor, J.M., Nemoto, K., Munro, W.J., Van Meter, R., Lukin, M.D.: Quantum repeater with encoding. Phys. Rev. A 79, 032325 (2009)

    Article  ADS  Google Scholar 

  55. Ewert, F., Bergmann, M., van Loock, P.: Ultrafast long-distance quantum communication with static linear optics. Phys. Rev. Lett. 117, 210501 (2016)

    Article  ADS  Google Scholar 

  56. Ewert, F., van Loock, P.: Ultrafast fault-tolerant long-distance quantum communication with static linear optics. Phys. Rev. A 95, 012327 (2017)

    Article  ADS  Google Scholar 

  57. Muralidharan, S., Kim, J., Lütkenhaus, N., Lukin, M.D., Jiang, L.: Ultrafast and fault-tolerant quantum communication across long distances. Phys. Rev. Lett. 112, 250501 (2014)

    Article  ADS  Google Scholar 

  58. Li, L., Zou, C.L., Albert, V.V., Muralidharan, S., Girvin, S.M., Jiang, L.: Cat codes with optimal decoherence suppression for a lossy bosonic channel. Phys. Rev. Lett. 119, 030502 (2017)

    Article  ADS  Google Scholar 

  59. Fröwis, F., Düer, W.: Stable macroscopic quantum superpositions. Phys. Rev. Lett. 106, 110402 (2011)

    Article  ADS  Google Scholar 

  60. Ding, D., Yan, F.L., Gao, T.: Preparation of km-photon concatenated Greenberger–Horne–Zeilinger states for observing distinctive quantum effects at macroscopic scales. J. Opt. Soc. Am. B 30, 3075–3078 (2013)

    Article  ADS  Google Scholar 

  61. Lu, H., Chen, L.K., Liu, C., Xu, P., Yao, X.C., Li, L., Liu, N.L., Zhao, B., Chen, Y.A., Pan, J.W.: Experimental realization of a concatenated Greenberger–Horne–Zeilinger state for macroscopic quantum superpositions. Nature 8, 364–368 (2014)

    Google Scholar 

  62. Zhou, L., Sheng, Y.B.: Purification of logic-qubit entanglement. Sci. Rep. 6, 28813 (2016)

    Article  ADS  Google Scholar 

  63. Zhou, L., Sheng, Y.B.: Polarization entanglement purification for concatenated Greenberger–Horne–Zeilinger state. Ann. Phys. 385, 10–35 (2017)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant Nos. 11474168 and 11747161.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Bo Sheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, XD., Zhou, L., Zhong, W. et al. Purification of the concatenated Greenberger–Horne–Zeilinger state with linear optics. Quantum Inf Process 17, 255 (2018). https://doi.org/10.1007/s11128-018-2020-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2020-9

Keywords

Navigation