Skip to main content
Log in

Reference-frame-independent measurement-device-independent quantum key distribution using hybrid logical basis

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The multiple-qubit logical basis, originally introduced in the context of fault-tolerant quantum computing in decoherence-free subspace (DFS), has specific applications for resolving a reference frame misalignment problem in quantum information protocols. In this paper, an alignment-free MDI-QKD scheme is proposed with rotational-invariant state, which is immune to the collective noise induced by misalignment between two distant legitimate parties. In our protocol, the initial logical qubit is created in the polarization-orbit angular momentum hybrid space, while the transmission is entirely done in the rotation-invariant DFS under the collective noise associated with misalignment. The partial Bell state measurement is performed on the logical qubits to sort the logical Bell state. Compared with the original MDI-QKD protocols, the numerical simulations show that our modified scheme has apparent improvements both in transmission distance and key generation rate. Furthermore, only ordinary optical elements are required in our protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Source: 632-nm CW laser. PolM: polarization modulator; IM: optical intensity modulator; BS: 50:50 beam splitter; SPD: Si single-photon detectors; PBS: polarization beam splitter

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography. In: Proceedings of the IEEE International Conference Computers, Systems and Signal Processing, pp. 175–179. IEEE, New York (1984)

  2. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)

    Article  ADS  Google Scholar 

  3. Mayers, D.: Unconditional security in quantum cryptography. J. ACM 48, 351–406 (2001)

    Article  MathSciNet  Google Scholar 

  4. Gottesman, D., Lo, H.K., Lutkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. Quantum. Inf. Comput. 4, 325–360 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Braunstein, S.L., Pirandola, S.: Side-channel-free quantum key distribution. Phys. Rev. Lett. 108, 130502 (2012)

    Article  ADS  Google Scholar 

  6. Brassard, G., Lutkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330–1333 (2000)

    Article  ADS  Google Scholar 

  7. Sun, S.H., Liang, L.M.: Experimental demonstration of an active phase randomization and monitor module for quantum key distribution. Appl. Phys. Lett. 101, 071107 (2012)

    Article  ADS  Google Scholar 

  8. Makarov, V., Skaar, J.: Faked states attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols. Quantum. Inf. Comput. 86, 0622–0635 (2008)

    MATH  Google Scholar 

  9. Zhao, Y., Fung, C.H.F., Qi, B., Chen, C., Lo, H.K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys. Rev. A 78, 042333 (2008)

    Article  ADS  Google Scholar 

  10. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  11. Rubenok, A., Slater, J.A., Chan, P., Lucio, I., Tittel, M.W.: Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks. Phys. Rev. Lett. 111, 130501 (2014)

    Article  Google Scholar 

  12. Ferreira da Silva, T., Vitoreti, D., Xavier, G.B., do Amaral, G.C., Temporao, G.P., vonder Weid, J.P.: Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits. Phys. Rev. A 88, 052303 (2013)

    Article  ADS  Google Scholar 

  13. Liu, Y., Chen, T.Y., Wang, L.J., Liang, H., Shentu, G.L., Wang, J., Cui, K., Yin, H.L., Liu, N.L., Li, L., et al.: Experimental measurement-device-independent quantum key distribution. Phys. Rev. Lett. 111, 130502 (2013)

    Article  ADS  Google Scholar 

  14. Tang, Z., Liao, Z., Xu, F., Qi, B., Qian, L., Lo, H.K.: Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. Phys. Rev. Lett. 112, 190503 (2013)

    Article  Google Scholar 

  15. Yin, H.L., et al.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117, 190501 (2016)

    Article  ADS  Google Scholar 

  16. Peres, A., Scudo, P.F.: Entangled quantum states as direction indicators. Phys. Rev. Lett. 86, 4160 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  17. Peres, A., Scudo, P.F.: Transmission of a Cartesian frame by a quantum system. Phys. Rev. Lett. 87, 167901 (2001)

    Article  ADS  Google Scholar 

  18. Laing, A., Scarani, V., Rarity, J.G., O’Brien, J.L.: Reference-frame-independent quantum key distribution. Phys. Rev. A. 82, 012304 (2010)

    Article  ADS  Google Scholar 

  19. Liang, W.Y., Wang, S., Li, H.W., Yin, Z.Q., Chen, W., Yao, Y., Huang, J.Z., Guo, G.C., Han, Z.F.: Proof of principle experiment of reference-frame-independent quantum key distribution with phase coding. Sci. Rep. 4, 3617 (2014)

    Article  Google Scholar 

  20. Chen, T.-Y., et al.: Experimental quantum communication without a shared reference frame. Phys. Rev. Lett. 96, 150504 (2006)

    Article  ADS  Google Scholar 

  21. Aolita, L., Walborn, S.: Quantum communication without alignment using multiple-qubit single-photon states. Phys. Rev. Lett. 98, 100501 (2007)

    Article  ADS  Google Scholar 

  22. Vallone, G., Ambrosio, V.D., Sponselli, A., Slussarenko, S., Marrucci, L., Sciarrino, F., Villoresi, P.: Free-space quantum key distribution by rotation-invariant twisted photons. Phys. Rev. Lett. 113, 060503 (2013)

    Article  Google Scholar 

  23. Ambrosio, V.D., Nagali, E., Walborn, S.P., Aolita, L., Slussarenko, S., Marrucci, L., Sciarrino, F.: Complete experimental toolbox for alignment-free quantum communication. Nat. Commun. 3, 961 (2012)

    Article  Google Scholar 

  24. Sasada, Hiroyuki: Megumi Okamoto transverse-mode beam splitter of a light beam and its application to quantum cryptography. Phys. Rev. A 68, 012323 (2003)

    Article  ADS  Google Scholar 

  25. Xu, F.H., Curty, M., Qi, B., Lo, H.K.: Practical aspects of measurement-device-independent quantum key distribution. N. J. Phys. 15, 113007 (2013)

    Article  Google Scholar 

  26. Krenn, M., Fickler, R., Fink, M., Handsteiner, J., Malik, M., Scheidl, T., Ursin, R., Zeilinger, A.: Twisted photon entanglement through turbulent air across Vienna. PNAS 112(46), 14197–14201 (2015)

    Article  ADS  Google Scholar 

  27. Bozinovic, N., et al.: Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340(6140), 1545–1548 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank L.M. Liang and Y.Y. Tu for many helpful advices. C. Dong is supported by the fund of National Natural Science Foundation of China (Grant No. 11704412) and the Research Fund of National University of Defense and Technology (Grant No. ZK17-02-09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Wei, L., YaLiang, C. et al. Reference-frame-independent measurement-device-independent quantum key distribution using hybrid logical basis. Quantum Inf Process 17, 256 (2018). https://doi.org/10.1007/s11128-018-2030-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2030-7

Keywords

Navigation