Skip to main content
Log in

Parallel remote state preparation of arbitrary single-qubit states via linear-optical elements by using hyperentangled Bell states as the quantum channel

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

It is well known that transmitting quantum states remotely is one of central tasks in quantum information processing. Until now, there are some important works in remote state preparation, the efficient method to transmit quantum states remotely. However, most of them are focused on remote state preparation via one degree of freedom (DOF) of quantum systems. In this article, we investigate the possibility of performing parallel quantum remote state preparation based on two DOFs of photons. We proposed a protocol for parallel remote preparation of arbitrary single-qubit states via hyperentangled photons which are entangled in both spatial-mode DOF and polarization DOF simultaneously. The sender performs unitary operations on his hyperentangled photon according to his knowledge of prepared states; the receiver can reconstruct the original states on his hyperentangled photon if he cooperates with the sender. The scheme has the advantage of having less quantum entanglement cost and classical communication. Moreover, we also discuss the scheme for recursive remote preparation of arbitrary single-qubit states via partially hyperentangled Bell states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bennett, C.H., Brassad, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India. IEEE, New York, pp. 175–179. IEEE Press, New York (1984)

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  3. Leverrier, A.: Security of continuous-variable quantum key distribution via a Gaussian de Finetti reduction. Phys. Rev. Lett. 118(20), 200501 (2017)

    Article  ADS  Google Scholar 

  4. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    Article  ADS  Google Scholar 

  5. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  6. Hu, J. Y., Yu, B., Jing, M. Y., Xiao, L. T., Jia, S. T., Qin, G. Q., Long, G. L.: Experimental quantum secure direct communication with single photons. Light: Sci. Appl. 5(9), e16144 (2016)

    Article  Google Scholar 

  7. Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118(22), 220501 (2017)

    Article  ADS  Google Scholar 

  8. Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  9. Liu, X.S., Long, G.L., Tong, D.M., Li, F.: General scheme for superdense coding between multiparties. Phys. Rev. A 65(2), 022304 (2002)

    Article  ADS  Google Scholar 

  10. Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys. 4(4), 282 (2008)

    Article  Google Scholar 

  11. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63(1), 014302 (2000)

    Article  ADS  Google Scholar 

  12. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62(1), 012313 (2000)

    Article  ADS  Google Scholar 

  13. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87(7), 077902 (2001)

    Article  ADS  Google Scholar 

  14. Leung, D.W., Shor, P.W.: Oblivious remote state preparation. Phys. Rev. Lett. 90(12), 127905 (2003)

    Article  ADS  Google Scholar 

  15. Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90(5), 057901 (2003)

    Article  ADS  Google Scholar 

  16. Ye, M.Y., Zhang, Y.S., Guo, G.C.: Faithful remote state preparation using finite classical bits and a nonmaximally entangled state. Phys. Rev. A 69(2), 022310 (2004)

    Article  ADS  Google Scholar 

  17. Dai, H.Y., Chen, P.X., Liang, L.M., Li, C.Z.: Classical communication cost and remote preparation of the four-particle GHZ class state. Phys. Lett. A 355, 285–288 (2006)

    Article  ADS  Google Scholar 

  18. Dai, H.Y., Chen, P.X., Zhang, M., Li, C.Z.: Remote preparation of an entangled two-qubit state with three parties. Chin. Phys. B 17(1), 27–33 (2008)

    Article  ADS  Google Scholar 

  19. Wei, J.H., Dai, H.Y., Zhang, M.: Two efficient schemes for probabilistic remote state preparation and the combination of both schemes. Quantum Inf. Process. 13(9), 2115–2125 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  20. Wei, J.H., Shi, L., Ma, L.H., Xue, Y., Zhuang, X.C., Kang, Q.Y., Li, X.S.: Remote preparation of an arbitrary multi-qubit state via two-qubit entangled states. Quantum Inf. Process. 16(10), 260 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  21. Dakić, B., Lipp, Y.O., Ma, X.S., Ringbauer, M., Kropatschek, S., Barz, S., Paterek, T., Vedral, V., Zeilinger, A., Brukner, \(\breve{C}\)., Walther, P.: Quantum discord as resource for remote state preparation. Nat. Phys. 8(9), 666 (2012)

    Article  ADS  Google Scholar 

  22. Erhard, M., Qassim, H., Mand, H., Karimi, E., Boyd, R.W.: Real-time imaging of spin-to-orbital angular momentum hybrid remote state preparation. Phys. Rev. A 95(2), 022321 (2015)

    Article  ADS  Google Scholar 

  23. Qu, Z.G., Wu, S.Y., Wang, M.M., Sun, L., Wang, X.J.: Effect of quantum noise on deterministic remote state preparation of an arbitrary two-particle state via various quantum entangled channels. Quantum Inf. Process. 16(12), 306 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  24. Liu, W.T., Wu, W., Ou, B.Q., Chen, P.X., Li, C.Z., Yuan, J.M.: Experimental remote preparation of arbitrary photon polarization states. Phys. Rev. A 76(2), 022308 (2007)

    Article  ADS  Google Scholar 

  25. Wu, W., Liu, W.T., Chen, P.X., Li, C.Z.: Deterministic remote preparation of pure and mixed polarization states. Phys. Rev. A 81(4), 042301 (2010)

    Article  ADS  Google Scholar 

  26. Lu, Q.C., Liu, D.P., He, Y.H., Liao, Y.M., Qin, X.C., Qin, J.S., Zhou, P.: Linear-optics-based bidirectional controlled remote state preparation via five-photon cluster-type states for quantum communication network. Int. J. Theor. Phys. 55(1), 535 (2016)

    Article  Google Scholar 

  27. Yu, R.F., Liu, Y.J., Zhou, P.: Joint remote preparation of arbitrary two- and three-photon state with linear-optical elements. Quantum Inf. Process. 15(11), 4785 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  28. Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Remote preparation of single-photon hybrid entangled and vector-polarization states. Phys. Rev. Lett. 105(3), 030407 (2010)

    Article  ADS  Google Scholar 

  29. Yang, T., Zhang, Q., Zhang, J., Yin, J., Zhao, Z., Zukowski, M.: All-versus-nothing violation of local realism by two-photon, four-dimensional entanglement. Phys. Rev. Lett. 95(24), 240406 (2005)

    Article  ADS  Google Scholar 

  30. Barreiro, J.T., Langford, N.K., Peters, N.A., Kwiat, P.G.: Generation of hyperentangled photon pairs. Phys. Rev. Lett. 95(26), 260501 (2005)

    Article  ADS  Google Scholar 

  31. Vallone, G., Donati, G., Ceccarelli, R., Mataloni, P.: Six-qubit two-photon hyperentangled cluster states: Characterization and application to quantum computation. Phys. Rev. A 81(5), 052301 (2010)

    Article  ADS  Google Scholar 

  32. Gao, W.B., Lu, C.Y., Yao, X.C., Xu, P., G\(\ddot{u}\)hne, O., Goebel, A., Chen, Y. A., Peng, C. Z., Chen, Z. B., Pan, J. W.: Experimental demonstration of a hyper-entangled ten-qubit Schr\(\ddot{o}\)inger cat state. Nat. Phys. 6(5), 331 (2010)

  33. Kang, D.P., Helt, L.G., Zhukovsky, S.V., Torres, J.P., Sipe, J.E., Helmy, A.S.: Hyperentangled photon sources in semiconductor waveguides. Phys. Rev. A 89(2), 023833 (2014)

    Article  ADS  Google Scholar 

  34. Ren, B.C., Deng, F.G.: Hyper-parallel photonic quantum computing with coupled quantum dots. Sci. Rep. 4, 4623 (2014)

    Article  Google Scholar 

  35. Li, T., Long, G.L.: Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities. Phys. Rev. A 94(2), 022343 (2016)

    Article  ADS  Google Scholar 

  36. Wei, H.R., Deng, F.G., Long, G.L.: Hyper-parallel Toffoli gate on three-photon system with two degrees of freedom assisted by single-sided optical microcavities. Opt. Express 24(16), 18619 (2016)

    Article  ADS  Google Scholar 

  37. Wei, T.C., Barreiro, J.T., Kwiat, P.G.: Hyperentangled bell-state analysis. Phys. Rev. A 75(6), 060305(R) (2007)

    Article  ADS  MathSciNet  Google Scholar 

  38. Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82(3), 032318 (2010)

    Article  ADS  Google Scholar 

  39. Xia, Y., Chen, Q.Q., Song, J., Song, H.S.: Efficient hyperentangled GreenbergerCHorneCZeilinger states analysis with cross-Kerr nonlinearity. J. Opt. Soc. Am. B 29(5), 1029 (2012)

    Article  ADS  Google Scholar 

  40. Liu, Q., Wang, G.Y., Ai, Q., Zhang, M., Deng, F.G.: Complete nondestructive analysis of two-photon six-qubit hyperentangled Bell states assisted by cross-Kerr nonlinearity. Sci. Rep. 6, 22016 (2016)

    Article  ADS  Google Scholar 

  41. Li, X.H., Ghose, S.: Self-assisted complete maximally hyperentangled state analysis via the cross-Kerr nonlinearity. Phys. Rev. A 93(2), 022302 (2016)

    Article  ADS  Google Scholar 

  42. Wang, T.J., Song, S.Y., Long, G.L.: Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities. Phys. Rev. A 85(6), 062311 (2012)

    Article  ADS  Google Scholar 

  43. Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 82(3), 032307 (2010)

    Article  ADS  Google Scholar 

  44. Li, X.H.: Deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82(4), 044304 (2010)

    Article  ADS  Google Scholar 

  45. Deng, F.G.: One-step error correction for multipartite polarization entanglement. Phys. Rev. A 83(6), 062316 (2011)

    Article  ADS  Google Scholar 

  46. Ren, B.C., Deng, F.G.: Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities. Laser Phys. Lett. 10(11), 115201 (2013)

    Article  ADS  Google Scholar 

  47. Du, F.F., Li, T., Long, G.L.: Refined hyperentanglement purification of two-photon systems for high-capacity quantum communication with cavity-assisted interaction. Ann. Phys. 375, 105 (2016)

    Article  ADS  Google Scholar 

  48. Ren, B.C., Du, F.F., Deng, F.G.: Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88(1), 012302 (2013)

    Article  ADS  Google Scholar 

  49. Li, X.H., Ghose, S.: Hyperconcentration for multipartite entanglement via linear optics. Laser phys. Lett. 11(12), 125201 (2014)

    Article  ADS  Google Scholar 

  50. Ren, B.C., Wang, H., Alzahrani, F., Hobiny, A., Deng, F.G.: Hyperentanglement concentration of nonlocal two-photon six-qubit systems with linear optics. Ann. Phys. 385, 86 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  51. Wang, Z.H., Wu, X.Y., Yu, W.X., Alzahrani, F., Hobiny, A., Deng, F.G.: Practical entanglement concentration of nonlocal polarization-spatial hyperentangled states with linear optics. Quantum Inf. Process. 16(5), 141 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  52. Wu, F.Z., Yang, G.J., Wang, H.B., Xiong, J., Alzahrani, F., Hobiny, A., Deng, F.G.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. China Phys. Mech. Astron. 60(12), 120313 (2017)

    Article  ADS  Google Scholar 

  53. Nawaz, M., Ikram, M.: Remote state preparation through hyperentangled atomic states. J. Phys. B 51(7), 075501 (2018)

    Article  ADS  Google Scholar 

  54. Wang, X.L., Cai, X.D., Su, Z.E., Chen, M.C., Wu, D., Li, L., Liu, N.L., Lu, C.Y., Pan, J.W.: Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518(7540), 516 (2015)

    Article  ADS  Google Scholar 

  55. Deng, F.G., Ren, B.C., Li, X.H.: Quantum hyperentanglement and its applications in quantum information processing. Sci. Bull. 62(1), 46 (2017)

    Article  Google Scholar 

  56. Jiang, M., Dong, D.: A recursive two-phase general protocol on deterministic remote preparation of a class of multi-qubit states. J. Phys. B 45(20), 205506 (2012)

    Article  ADS  Google Scholar 

  57. Li, X.H., Deng, F.G., Li, C.Y., Liang, Y.J., Zhou, P., Zhou, H.Y.: Deterministic secure quantum communication without maximally entangled states. J. Korean Phys. Soc. 49(4), 1354–1359 (2006)

    Google Scholar 

  58. Yuan, H., Deng, L., Zhang, Y.M., Zhang, W., Zhan, Z.: Optimizing resource consumption, operation complexity and efficiency in quantum-state sharing. J. Phys. B 41(14), 145506 (2008)

    Article  ADS  Google Scholar 

  59. Choudhury, B.S., Samanta, S.: Simultaneous perfect teleportation of three 2-qubit states. Quantum Inf. Process. 16(9), 230 (2017)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61501129 and 11564004, Natural Science Foundation of Guangxi under Grant Nos. 2014GXNSFAA118008, Special Funds of Guangxi Distinguished Experts Construction Engineering and Xiangsihu Young Scholars and Innovative Research Team of GXUN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, P., Jiao, XF. & Lv, SX. Parallel remote state preparation of arbitrary single-qubit states via linear-optical elements by using hyperentangled Bell states as the quantum channel. Quantum Inf Process 17, 298 (2018). https://doi.org/10.1007/s11128-018-2067-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2067-7

Keywords

Navigation