Skip to main content
Log in

Preparing large-scale maximally entangled W states in optical system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose an optical scheme to prepare large-scale maximally entangled W states by fusing arbitrary-size polarization entangled W states via polarization-dependent beam splitter. Because most of the currently existing fusion schemes are suffering from the qubit loss problem, that is the number of the output entangled qubits is smaller than the sum of numbers of the input entangled qubits, which will inevitably decrease the fusion efficiency and increase the number of fusion steps as well as the requirement of quantum memories, in our scheme, we design a effect fusion mechanism to generate \(W_{m+n}\) state from a n-qubit W state and a m-qubit W state without any qubit loss. As the nature of this fusion mechanism clearly increases the final size of the obtained W state, it is more efficient and feasible. In addition, our scheme can also generate \(W_{m+n+t-1}\) state by fusing a \(W_m\), a \(W_n\) and a \(W_t\) states. This is a great progress compared with the current scheme which has to lose at least two particles in the fusion of three W states. Moreover, it also can be generalized to the case of fusing k different W states, and all the fusion schemes proposed here can start from Bell state as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Raussendorf, R., Browne, D.E., Briegel, H.J.: Measurement-based quantum computation on cluster states. Phys. Rev. A 68, 022312 (2003)

    Article  ADS  Google Scholar 

  2. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575 (1997)

    Article  ADS  Google Scholar 

  4. Özdemir, Ş.K., Bartkiewicz, K., Liu, Y.X., Miranowicz, A.: Teleportation of qubit states through dissipative channels: conditions for surpassing the no-cloning limit. Phys. Rev. A 76(4), 042325 (2007)

    Article  ADS  Google Scholar 

  5. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  6. Dür, W.: Multipartite entanglement that is robust against disposal of particles. Phys. Rev. A 63, 020303(R) (2001)

    Article  ADS  Google Scholar 

  7. Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bells theorem without inequalities. Am. J. Phys. 58, 1131 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  8. Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910 (2001)

    Article  ADS  Google Scholar 

  9. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  10. D’Hondt, E., Panangaden, P.: The computational power of the \(W\) and GHZ states. Quantum Inf. Comput. 6, 173 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Zhao, Z., Chen, Y.A., Zhang, A.N., Yang, T., Briegel, H.J., Pan, J.W.: Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature 430, 54 (2004)

    Article  ADS  Google Scholar 

  12. Kempe, J.: Multiparticle entanglement and its applications to cryptography. Phys. Rev. A 60, 910 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  13. Joo, J., Lee, J., Jang, J., Park, Y.J.: Quantum secure communication with \(W\) states. arXiv:quant-ph/0204003 (2002)

  14. Murao, M., Jonathan, D.M., Plenio, B., Vedral, V.: Coherent oscillations between two weakly coupled Bose–Einstein condensates: Josephson effects, \(\pi \) oscillations, and macroscopic quantum self-trapping. Phys. Rev. A 59, 156 (1999)

    Article  ADS  Google Scholar 

  15. Shi, B.S., Tomita, A.: Teleportation of an unknown state by \(W\) states. Phys. Lett. A 296, 161 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  16. Joo, J., Park, Y.J., Oh, S., Kim, J.: Quantum teleportation via a \(W\) state. New J. Phys. 5, 136 (2003)

    Article  ADS  Google Scholar 

  17. Yeo, Y.: Quantum teleportation using three-particle entanglement. arXiv:quant-ph/0302030 (2003)

  18. Bose, S., Vedral, V., Kninght, P.L.: Multiparticle generalization of entanglement swapping. Phys. Rev. A 57, 822 (1998)

    Article  ADS  Google Scholar 

  19. Liu, X.S., Long, G.L., Tong, D.M., Li, F.: General scheme for superdense coding between multiparties. Phys. Rev. A 65, 022304 (2002)

    Article  ADS  Google Scholar 

  20. D’Hondt, E., Panangaden, P.: The computational power of the \(W\) and GHZ states. Quantum Inf. Comput. 6, 173–183 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Ozaydin, F.: Phase damping destroys quantum Fisher information of \(W\) states. Phys. Lett. A 378, 3161–3164 (2014)

    Article  ADS  Google Scholar 

  22. Ozaydin, F., Altintas, A., Yesilyurt, C., Bugu, S., Erol, V.: Quantum Fisher information of bipartitions of \(W\) states. Acta Phys. Pol. A 127(4), 1233–1235 (2015)

    Article  Google Scholar 

  23. Dag, C.B., Mustecaplioglu, O.E.: Multiatom quantum coherences in micromasers as fuel for thermal and nonthermal machines. arXiv:1507.08136 (2016)

  24. Tashima, T., Özdemir, Ş.K., Yamamoto, T., Koashi, M., Imoto, N.: Elementary optical gate for expanding an entanglement web. Phys. Rev. A 77(3), 030302(R) (2008)

    Article  ADS  Google Scholar 

  25. Tashima, T., Özdemir, Ş.K., Yamamoto, T., Koashi, M., Imoto, N.: Local expansion of photonic \(W\) state using a polarization-dependent beamsplitter. New J. Phys. 11, 023024 (2009)

    Article  ADS  Google Scholar 

  26. Zang, X.P., Yang, M., Wu, W.F., Fang, S.D., Cao, Z.L.: Local expansion of atomic \(W\) state in cavity quantum electrodynamics. Indian J. Phys. 88, 1141 (2014)

    Article  ADS  Google Scholar 

  27. Zang, X.P., Yang, M., Ozaydin, F., Song, W., Cao, Z.L.: Deterministic generation of large scale atomic \(W\) states. Opt. Express 24, 12293 (2016)

    Article  ADS  Google Scholar 

  28. Yesilyurt, C., Bugu, S., Ozaydin, F., Altintas, A., Tame, M., Yang, L., Özdemir, Ş.K.: Deterministic local expansion of \(W\) states. J. Opt. Soc. Am. B 33, 2313 (2016)

    Article  ADS  Google Scholar 

  29. Tashima, T., Kitano, T., Özdemir, Ş.K., Yamamoto, T., Koashi, M., Imoto, N.: Demonstration of local expansion toward large-scale entangled webs. Phys. Rev. lett. 105(21), 210503 (2010)

    Article  ADS  Google Scholar 

  30. Özdemir, Ş.K., Matsunaga, E., Tashima, T., Yamamoto, T., Koashi, M., Imoto, N.: An optical fusion gate for \(W\)-states. New J. Phys. 13, 103003 (2011)

    Article  ADS  Google Scholar 

  31. Ozaydin, F., Bugu, S., Yesilyurt, C., Altintas, A.A., Tame, M., Özdemir, Ş.K.: Fusing multiple \(W\) states simultaneously with a Fredkin gate. Phys. Rev. A 89, 042311 (2014)

    Article  ADS  Google Scholar 

  32. Yesilyurt, C., Bugu, S., Ozaydin, F.: An optical gate for simultaneous fusion of four photonic \(W\) or Bell states. Quantum Inf. Process. 12, 2965 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  33. Bugu, S., Yesilyurt, C., Ozaydin, F.: Enhancing the \(W\)-state quantum-network-fusion process with a single Fredkin gate. Phys. Rev. A 87, 032331 (2013)

    Article  ADS  Google Scholar 

  34. Zang, X.P., Yang, M., Ozaydin, F., Song, W., Cao, Z.L.: Generating multi-atom entangled \(W\) states via light-matter interface based fusion mechanism. Sci. Rep. 5, 16245 (2015)

    Article  ADS  Google Scholar 

  35. Dikera, F., Ozaydinb, F., Arika, M.: Enhancing the \(W\) state fusion process with a to oli gate and a CNOT gate via one-way quantum computation and linear optics. Acta Phys. Pol. A 127(4), 1189–190 (2015)

    Article  Google Scholar 

  36. Li, N., Yang, J., Ye, L.: Realizing an efficient fusion gate for \(W\) states with cross-Kerr nonlinearities and QD-cavity coupled system. Quantum Inf. Process. 14(6), 1933–1946 (2015)

    Article  ADS  Google Scholar 

  37. Li, K., Kong, F.Z., Yang, M., Yang, Q., Cao, Z.L.: Qubit-loss-free fusion of \(W\) states. Phys. Rev. A 94(6), 062315 (2016)

    Article  ADS  Google Scholar 

  38. Tashima, T., Wakatsuki, T., Ozdemir, S.K., Yamamoto, T., Koashi, M., Imoto, N.: Local transformation of two Einstein–Podolsky–Rosen photon pairs into a three-photon \(W\) state. Phys. Rev. Lett. 102(13), 130502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC) under Grant No. 61274100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huibing Mao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Chen, T., Mao, H. et al. Preparing large-scale maximally entangled W states in optical system. Quantum Inf Process 17, 307 (2018). https://doi.org/10.1007/s11128-018-2076-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2076-6

Keywords

Navigation