Skip to main content

Advertisement

Log in

Spin–orbit hybrid entangled channel for spin state quantum teleportation using genetic algorithms

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a physical model of spin quantum teleportation protocol (QTP) in a triple quantum dot array using a genetic algorithm approach. The information to teleport is spin-coded in one electron confined in a single quantum dot (SQD). The remaining double quantum dot (DQD) system has just an electron with spin that includes spin–orbit interaction. Charge and spin of the electron get hybridized with the site occupancy having two intrinsic quantum degrees of freedom. The DQD is prepared in a hybrid spin–orbit entangled (HES) Bell-like state with tunneling and site energies as time-dependent control parameters that are optimized by means of genetic algorithms (GAs). The hybrid entangled resources that we obtained allow spin-charge quantum state teleportation with a fidelity of 0.9972 and are used as a resource channel to establish the QT protocol. The spin state of the electron in the SQD interacts with the DQD spin–orbit entangled channel via a modulated exchange interaction to emulate Alice’s joint measurement required for QT with GA parameter control. A charge detection measurement in one of the DQD systems is sufficient to have the spin state teleported up to a unitary transformation. A specific joint measurement and unitary transformation were selected to test the protocol, and we obtain fidelity of 0.99 for the QTP. The quantum circuit models for both the spin–orbit entangled state and the teleportation are determined from the analysis of the stages of the controlled quantum dynamics obtained from the GA approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jozsa, R., Linden, N.: On the role of entanglement in quantum-computational speed-up. Proc. R. Soc. A Math. Phys. Eng. Sci. 459(2036), 2011–2032 (2003). https://doi.org/10.1098/rspa.2002.1097

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865–942 (2009). https://doi.org/10.1103/RevModPhys.81.865

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Pirandola, S., Eisert, J., Weedbrook, C., Furusawa, A., Braunstein, S.L.: Advances in quantum teleportation. Nat. Photon. 9, 641–652 (2015)

    Article  ADS  Google Scholar 

  4. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881–2884 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bennett, C.H., Brassard, G., Crépeau, C.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895–1898 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  6. Bouwmeester, D., Pan, J.W., Mattle, K., Eibi, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  7. Riebe, M., Häffner, H., Ross, C.F., Hänsel, W., Benhelm, J., Lancaster, G.P.T., Wörber, T.W., Becher, C., Schmidt-Kaler, F., James, D.F.V., Blatt, R.: Deterministic quantum teleportation with atoms. Nature 429(17), 734–737 (2004)

    Article  ADS  Google Scholar 

  8. Contreras-Pulido, L.D., Aguado, R.: Entanglement between charge qubits induced by common dissipative environment. Phys. Rev. B 77(15), 155,420 (2004)

    Article  Google Scholar 

  9. Bernien, H., Hensen, B., Pfaff, W., Koolstra, G., Blok, M.S., Robledo, L., Taminiau, T.H., Markham, M., Twitchen, D.J., Childress, L., Hanson, R.: Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86 (2016). https://doi.org/10.1038/nature12016

    Article  ADS  Google Scholar 

  10. Morton, J.J., Lovett, B.W.: Hybrid solid-state qubits: the powerful role of electron spins. Annu. Rev. Condens. Matter Phys. 2(1), 189–212 (2011). https://doi.org/10.1146/annurev-conmatphys-062910-140514

    Article  ADS  Google Scholar 

  11. Gao, W.B., Fallahi, P., Togan, E., Delteil, A., Chin, Y.S., Miguel-Sanchez, J., Imamog̃lu, A.: Quantum teleportation from a propagating photon to a solid-state spin qubit. Nat. Commun. 4, 2744 (2013). https://doi.org/10.1038/ncomms3744

    Article  ADS  Google Scholar 

  12. Dresselhaus, G.: Spin-orbit coupling effects in zinc blende structures. Phys. Rev. 100(2), 580–586 (1955)

    Article  ADS  Google Scholar 

  13. Perel, V.I., Tarasenko, S.A., YAssievich, I.N., Ganichev, S.A., Bel’kov, V.V., Prettl, W.: Spin-dependent tunneling through a symmetric semiconductor barrier. Phys. Rev. B 67, 201,304 (2003)

    Article  Google Scholar 

  14. Bang, J., Yoo, S.: A genetic-algorithm-based method to find unitary transformations for any desired quantum computation and application to a one-bit oracle decision problem. J. Korean Phys. Soc. 62(12), 2001 (2014). https://doi.org/10.1038/nature12016

    Article  Google Scholar 

  15. Holland, J.C.: Adaptation in Natural and Artificial Systems, primera edn. The University of Michigan Press, Michigan (1975)

    Google Scholar 

  16. Krause, J., Reitze, D., Sanders, G., Kuznetsov, A., Stanton, C.: Quantum control in quantum wells. Phys. Rev. B 57(15), 9024–9034 (1998)

    Article  ADS  Google Scholar 

  17. Navarro-Muñoz, J.C., Rosu, H.C., López-Sandoval, R.: Genetic algorithm optimization of entanglement. Phys. Rev. A 74, 52308 (2006)

    Article  ADS  Google Scholar 

  18. van der Wiel, W.G., De Franceschi, S., Elzerman, J.M., Fujisawa, T., Tarucha, S., Kouwenhoven, L.P.: Electron transport through double quantum dots. Rev. Mod. Phys. 75, 1 (2002)

    Article  ADS  Google Scholar 

  19. Liu, Y.S., Yang, X.F.: Enhancement of thermoelectric efficiency in a double-quantum-dot molecular junction. J. Appl. Phys. 108, 023710 (2010)

    Article  ADS  Google Scholar 

  20. Menichetti, G., Grosso, G., Paravicini, P.: Analytic treatment of the thermoelectric properties for two coupled quantum dots threaded by magnetic fields. J. Phys. Commun. 2(5), 55026 (2018)

    Article  Google Scholar 

  21. Petta, J.R., Johnson, A.C., Taylor, J.M., Laird, E.A.: Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180 (2006)

    Article  ADS  Google Scholar 

  22. Koppens, F.H.L., Buizert, C., Tielrooij, K.J., Vinik, I.T., Nowack, K.C., Meunier, T., Kouwenhoven, L.P., Vandersypen, L.M.K.: Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442, 766–771 (2006)

    Article  ADS  Google Scholar 

  23. Shi, Z., Simmons, C.B., Prance, J.R., King Gamble, J., Seng Koh, T., Shim, Y.P., Hu, X., Savage, D.E., Lagally, M.G., Eriksson, M.A., Friesen, M., Coppersmith, S.N.: Fast hybrid silicon double-quantum-dot qubits. Phys. Rev. Lett. 108, 140503 (2012)

    Article  ADS  Google Scholar 

  24. Nilsson, M., Chen, I.J., Lehmann, S., Maulerova, V., Dick, K.A., Thelander, C.: Parallel-coupled quantum dots in InAs nanowires. Nano Lett. 17(12), 7847–7852 (2017). https://doi.org/10.1021/acs.nanolett.7b04090

    Article  ADS  Google Scholar 

  25. Hetano, T., Tokura, Y., Amaha, S., Kubo, T., Teraoka, S., Tarucha, S.: Excitation spectroscopy of few-electron states in artificial diatomic molecules. Phys. Rev. B 87, 241414 (2013)

    Article  ADS  Google Scholar 

  26. Sattler, K.D.: Handbook of Nanophysics. Nanoparticles and Quantum Dots, primera edn. University of Hawaii-Manoa, Honolulu (2010)

  27. Gittings, J., Fisher, A.: Describing mixed spin-space entanglement of pure states of indistinguishable particles using an occupation-number basis. Phys. Rev. A 66(3), 032305 (2002). https://doi.org/10.1103/PhysRevA.66.032305

    Article  ADS  Google Scholar 

  28. Wang, H., Kais, S.: Quantum teleportation in one-dimensional quantum dots system. Chem. Phys. Lett. 421(4–6), 338–342 (2006). https://doi.org/10.1016/j.cplett.2006.01.093

    Article  ADS  Google Scholar 

  29. Visser, R.L., Blaauboer, M.: Deterministic teleportation of electrons in a quantum dot nanostructure. Phys. Rev. Lett. 96, 246801 (2006)

    Article  ADS  Google Scholar 

  30. Bader, S., Parkin, S.: Spintronics. Annu. Rev. Condens. Matter Phys. 1(1), 71–88 (2010). https://doi.org/10.1146/annurev-conmatphys-070909-104123

    Article  ADS  Google Scholar 

  31. Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195–200 (1964)

    Article  MathSciNet  Google Scholar 

  32. Haupt, R.: Comparison between genetic and gradient-based optimization algorithms for solving electromagnetics problems. IEEE Trans. Magn. 31(3), 1932–1935 (1995). https://doi.org/10.1109/20.376418

    Article  ADS  Google Scholar 

  33. Zingg, D.W., Nemec, M., Pulliam, T.H.: A comparative evaluation of genetic and gradient-based algorithms applied to aerodynamic optimization. Revue européenne de mécanique numérique 17(1–2), 103–126 (2008). https://doi.org/10.3166/remn.17.103-126

    Article  MATH  Google Scholar 

  34. Carbonneau, P.: Genetic algorithms in astronomy and astrophysics. Astrophys. J. Suppl. Ser. 101, 309–334 (1995)

    Article  ADS  Google Scholar 

  35. Hill, S., Wootters, K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78(26), 5022–5025 (1997)

    Article  ADS  Google Scholar 

  36. Nielsen, M., Chuang, I.L.: Quantum Computation and Quantum Information, 1st edn. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  37. Studer, M., Walser, M.P., Baer, S., Rusterholz, H., Schön, S., Schuh, D., Wagscheider, W., Enssin, K., Salis, G.: Role of linear en cubic terms for the drift-induced Dresselhaus spin-orbit splitting in a two-dimensional electron gas. Cond. Mat. Hall, pp. 1–7 (2010)

  38. Bonestel, N.E.D., Stepanenko, D., DiVincenzo, D.P.: Anisotropic spin exchange in pulsed quantum gates. Phys. Rev. Lett. 87, 207901 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The first author expresses his gratitude to CONACyT-México for the scholarship received and upholds that most part of this work was developed as part of his master thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Domínguez-Serna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domínguez-Serna, F., Rojas, F. Spin–orbit hybrid entangled channel for spin state quantum teleportation using genetic algorithms. Quantum Inf Process 18, 32 (2019). https://doi.org/10.1007/s11128-018-2142-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2142-0

Keywords

Navigation