Skip to main content
Log in

Pairwise nonclassical correlations for superposition of Dicke states via local quantum uncertainty and trace distance discord

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The pairwise nonclassical correlations for two-qubit states, extracted from multi-qubit system with exchange symmetry and parity, are quantified by local quantum uncertainty and trace distance discord. The explicit expressions of local quantum uncertainty and geometric trace distance discord for Dicke states and their superpositions are given. A comparison between the two quantum correlations quantifiers is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. For a fixed odd value of N, LQU and TDD vary in function the n according to curves similar to those of Fig. 1. The only difference lies in two concerned quantifiers extremes points. Indeed, when \((N-1)\) [Resp. \((N+1)\)] is a multiple of 4, the two local maxima of LQU are pointing in \(n_-=(N+1)/4\) [Resp. \( (N-1)/4\)] and \(n_+=(3N-1)/4\) [Resp. \((3N+1)/4\)], while its local minimum, which corresponds to TDD’s local maximum, is pointed in \((N-1)/2\) and \((N+1)/2\).

References

  1. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195 (1964)

    Article  MathSciNet  Google Scholar 

  2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  4. Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474, 1 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  6. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  7. Horodecki, M., Oppenheim, J., Winter, A.: Partial quantum information. Nature 436, 673 (2005)

    Article  ADS  Google Scholar 

  8. Horodecki, M., Oppenheim, J., Winter, A.: Quantum state merging and negative information. Comm. Math. Phys. 269, 107 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  9. Plenio, M.B., Virmani, S.: An introduction to entanglement measures. Quant. Inf. Comput. 7, 1 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Ferraro, A., Aolita, L., Cavalcanti, D., Cucchietti, F.M., Acín, A.: Almost all quantum states have nonclassical correlations. Phys. Rev. A 81, 052318 (2010)

    Article  ADS  Google Scholar 

  11. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A: Math. Gen. 34, 6899 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  12. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  13. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: Discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)

    Article  ADS  Google Scholar 

  14. Dakić, B., Vedral, V., Brukner, Č.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  Google Scholar 

  15. Debarba, T., Maciel, T.O., Vianna, R.O.: Witnessed entanglement and the geometric measure of quantum discord. Phys. Rev. A 86, 024302 (2012)

    Article  ADS  Google Scholar 

  16. Montealegre, J.D., Paula, F.M., Saguia, A., Sarandy, M.S.: One-norm geometric quantum discord under decoherence. Phys. Rev. A 87, 042115 (2013)

    Article  ADS  Google Scholar 

  17. Ciccarello, F., Tufarelli, T., Giovannetti, V.: Toward computability of trace distance discord. New J. Phys. 16, 013038 (2014)

    Article  ADS  Google Scholar 

  18. Girolami, D., Tufarelli, T., Adesso, G.: Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013)

    Article  ADS  Google Scholar 

  19. Paris, M.G.A.: Quantum estimation for quantum technology. Int. J. Quant. Inf. 7, 125 (2009)

    Article  Google Scholar 

  20. Wigner, E.P., Yanasse, M.M.: Information contents of distributions. Proc. Natl. Acad. Sci. USA 49, 910 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  21. Luo, S.: Wigner–Yanase Skew information and uncertainty relations. Phys. Rev. Lett. 91, 180403 (2003)

    Article  ADS  Google Scholar 

  22. Wang, S., Li, H., Lu, X., Long, G.-L.: Closed form of local quantum uncertainty and a sudden change of quantum correlations. quant-ph/ arXiv:1307.0576v2

  23. Slaoui, A., Daoud, M., Ahl Laamara, R.: The dynamics of local quantum uncertainty and trace distance discord for two-qubit X states under decoherence: a comparative study. Quantum Inf. Process. 17, 178 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  24. Wang, X., Mølmer, K.: Pairwise entanglement in symmetric multi-qubit systems. Eur. Phys. J. D 18, 385 (2002)

    ADS  Google Scholar 

  25. Yin, X., Xi, Z., Lu, X.-M., Sun, Z., Wang, X.: Geometric measure of quantum discord for superpositions of Dicke states. J. Phys. B: At. Mol. Opt. Phys. 44, 245502 (2011)

    Article  ADS  Google Scholar 

  26. Ozawa, M.: Entanglement measures and the Hilbert–Schmidt distance. Phys. Lett. A 268, 158 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  27. Vedral, V., Plenio, M.B., Rippin, M.A., Knight, P.L.: Quantifying entanglement. Phys. Rev. Lett. 78, 2275 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  28. Dicke, R.H.: Coherence in spontaneous radiation processes. Phys. Rev. 93, 99 (1954)

    Article  ADS  Google Scholar 

  29. Bergmann, M., Gühne, O.: Entanglement criteria for Dicke states. J. Phys. A: Math. Theor. 46, 385304 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  30. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  31. Greenberger, D.M., Horne, M.A., Zeilinger, A.: Nonlocality of a single photon? Phys. Rev. Lett. 75, 2064 (1995)

    Article  ADS  Google Scholar 

  32. Kiesel, N., Schmid, C., Tóth, G., Solano, E., Weinfurter, H.: Experimental observation of four-photon entangled dicke state with high fidelity. Phys. Rev. Lett. 98, 063604 (2007)

    Article  ADS  Google Scholar 

  33. Radcliffe, J.M.: Some properties of coherent spin states. J. Phys. A: Gen. Phys. 4, 313 (1971)

    Article  ADS  Google Scholar 

  34. Daoud, M., Ahl Laamara, R., Kaydi, W.: Multipartite quantum correlations in even and odd spin coherent states. J. Phys. A: Math. Theor. 46, 395302 (2013)

    Article  MathSciNet  Google Scholar 

  35. Luo, S., Zhang, Q.: Informational distance on quantum-state space. Phys. Rev. A 69, 032106 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  36. Bloch, F.: Nuclear Induction. Phys. Rev. 70, 460 (1946)

    Article  ADS  Google Scholar 

  37. Fano, U.: Pairs of two-level systems. Rev. Mod. Phys. 55, 855 (1983)

    Article  ADS  Google Scholar 

  38. Kedif, Y., Daoud, M.: Local quantum uncertainty and trace distance discord dynamics for two-qubit X states embedded in non-Markovian environment. Int. J. Mod. Phys. B 32, 1850218 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  39. Paula, F.M., de Oliveira, T.R., Sarandy, M.S.: Geometric quantum discord through the Schatten 1-norm. Phys. Rev. A 87, 064101 (2013)

    Article  ADS  Google Scholar 

  40. Luo, S.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)

    Article  ADS  Google Scholar 

  41. Li, D., Li, X., Huang, H.: Stochastic local operations and classical communication properties of the n-qubit symmetric Dicke states. Europhys. Lett. 87, 20006 (2009)

    Article  ADS  Google Scholar 

  42. Chang, L., Luo, S.: Remedying the local ancilla problem with geometric discord. Phys. Rev. A 87, 062303 (2013)

    Article  ADS  Google Scholar 

  43. Xi, Z.-J., Xiong, H.-N., Li, Y.-M., Wang, X.-G.: Pairwise quantum correlations for superpositions of dicke states. Commun. Theor. Phys. 57, 771 (2012)

    Article  ADS  Google Scholar 

  44. Ma, Z.-H., Chen, Z.-H., Fanchini, F.F.: Multipartite quantum correlations in open quantum systems. New J. Phys. 15, 043023 (2013)

    Article  ADS  Google Scholar 

  45. Okrasa, M., Walczak, Z.: Quantum discord and multipartite correlations. Europhys. Lett. 96, 60003 (2011)

    Article  ADS  Google Scholar 

  46. Chakrabarty, I., Agrawal, P., Pati, A.K.: Quantum dissension: generalizing quantum discord for three-qubit states. Eur. Phys. J. D 65, 605 (2011)

    Article  ADS  Google Scholar 

  47. Rulli, C.C., Sarandy, M.S.: Global quantum discord in multipartite systems. Phys. Rev. A 84, 042109 (2011)

    Article  ADS  Google Scholar 

  48. Lipkin, H.J., Meshkov, N., Glick, A.J. : Validity of many-body approximation methods for a solvable model. (I). Exact solutions and perturbation theory. Nucl. Phys. 62 188 (1965)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youssef Khedif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khedif, Y., Daoud, M. Pairwise nonclassical correlations for superposition of Dicke states via local quantum uncertainty and trace distance discord. Quantum Inf Process 18, 45 (2019). https://doi.org/10.1007/s11128-018-2149-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2149-6

Keywords

Navigation