Skip to main content
Log in

Shortcuts to adiabatic for implementing controlled phase gate with Cooper-pair box qubits in circuit quantum electrodynamics system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We theoretically present a protocol to realize the controlled phase gate with Cooper-pair box (CPB) qubits in circuit quantum electrodynamics (circuit QED) system. In this protocol, the one-dimensional transmission line resonator in circuit QED system acting as quantum data bus generates a common cavity mode and interacts with each CPB qubit. The Rabi frequencies of driven pluses can be designed with simple Gaussian or trigonometric functions by utilizing the universal SU(2) transformation. Moreover, the level configurations of CPB qubits have been reported by previous protocol (Feng and Zhang in Phys C 470:240–243, 2010). Thus, the protocol can be realized easily in experiment. In addition, the influence of various decoherence processes such as spontaneous emissions, dephasings of the CPB qubits and the decay of the cavity mode on the fidelity is discussed by numerical simulations. The results show that the protocol is robust against the decoherence and parameter variations. Therefore, the protocol may be useful for the fields of quantum computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lloyd, S.: Ultimate physical limits to computation. Nature (London) 406, 1047–1054 (2000)

    Article  ADS  Google Scholar 

  2. Ng, Y.J.: Erratum: From computation to black holes and space–time foam. Phys. Rev. Lett. 86, 2946–2949 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  3. Wang, X.G., Sørensen, A., Mølmer, K.: Multibit gates for quantum computing. Phys. Rev. Lett. 86, 3907–3910 (2001)

    Article  ADS  Google Scholar 

  4. Deng, Z.J., Zhang, X.L., Wei, H., Gao, K.L., Feng, M.: Implementation of a nonlocal N-qubit conditional phase gate by single-photon interference. Phys. Rev. A 76, 044305 (2007)

    Article  ADS  Google Scholar 

  5. Duan, L.M., Wang, B., Kimble, H.J.: Robust quantum gates on neutral atoms with cavity-assisted photon scattering. Phys. Rev. A 72, 032333 (2005)

    Article  ADS  Google Scholar 

  6. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 41, 303–332 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Xu, H., Zhu, J., Lu, D., Zhou, X., Peng, X., Du, J.: Quantum factorization of 143 on a dipolar-coupling nuclear magnetic resonance system. Phys. Rev. Lett. 108, 130501 (2012)

    Article  ADS  Google Scholar 

  8. Grover, L.K.: Quantum computers can search rapidly by using almost any transformation. Phys. Rev. Lett. 80, 4329–4332 (1998)

    Article  ADS  Google Scholar 

  9. Barenco, A., Bennett, C.H., DiVincenzo, R.D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995)

    Article  ADS  Google Scholar 

  10. Sleator, T., Weinfurter, H.: Realizable universal quantum logic gates. Phys. Rev. Lett. 74, 4087–4090 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  11. DiVincenzo, D.P.: Two-bit gates are universal for quantum computation. Phys. Rev. A 51, 1015–1022 (1995)

    Article  ADS  Google Scholar 

  12. Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995)

    Article  ADS  Google Scholar 

  13. Bai, C.H., Wang, D.Y., Hu, S., Cui, W.X., Jiang, X.X., Wang, H.F.: Scheme for implementing multitarget qubit controlled-NOT gate of photons and controlled-phase gate of electron spins via quantum dot-microcavity coupled system. Quantum Inf. Process. 15, 1485–1498 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  14. Kang, Y.H., Xia, Y., Lu, P.M.: Two-photon phase gate with linear optical elements and atom-cavity system. Quantum Inf. Process. 15, 4521–4535 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  15. Barenco, A., Deutsch, D., Ekert, A.: Conditional quantum dynamics and logic gates. Phys. Rev. Lett. 74, 4083–4086 (1995)

    Article  ADS  Google Scholar 

  16. Shao, X.Q., Zhu, A.D., Zhang, S., Chung, J.S., Yeon, K.H.: Efficient scheme for implementing an N-qubit Toffoli gate by a single resonant interaction with cavity quantum electrodynamics. Phys. Rev. A 75, 034307 (2007)

    Article  ADS  Google Scholar 

  17. Chen, Y.H., Xia, Y., Cnen, Q.Q., Song, J.: Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states. Phys. Rev. A 91, 012325 (2015)

    Article  ADS  Google Scholar 

  18. Su, S.L., Liang, E.J., Zhang, S., Wen, J.J., Sun, L.L., Jin, Z., Zhu, A.D.: One-step implementation of the Rydberg–Rydberg-interaction gate. Phys. Rev. A 93, 012306 (2016)

    Article  ADS  Google Scholar 

  19. Su, S.L., Gao, Y., Liang, E.J., Zhang, S.: Fast Rydberg antiblockade regime and its applications in quantum logic gates. Phys. Rev. A 95, 022319 (2017)

    Article  ADS  Google Scholar 

  20. Liu, B.J., Huang, Z.H., Xue, Z.Y., Zhang, X.D.: Superadiabatic holonomic quantum computation in cavity QED. Phys. Rev. A 95, 062308 (2017)

    Article  ADS  Google Scholar 

  21. Gershenfeld, N.A., Chuang, I.L.: Bulk spin-resonance quantum computation. Science 275, 350–356 (1997)

    Article  MathSciNet  Google Scholar 

  22. Yang, C.P., Chu, S.I., Han, S.: Possible realization of entanglement, logical gates, and quantum-information transfer with superconducting-quantum-interference-device qubits in cavity QED. Phys. Rev. A 67, 042311 (2003)

    Article  ADS  Google Scholar 

  23. Yang, C.P., Han, S.: Realization of an n-qubit controlled-U gate with superconducting quantum interference devices or atoms in cavity QED. Phys. Rev. A 73, 032317 (2006)

    Article  ADS  Google Scholar 

  24. Zhang, Y., Zhao, X., Zheng, Z.F., Yu, L., Su, Q.P., Yang, C.P.: Universal controlled-phase gate with cat-state qubits in circuit QED. Phys. Rev. A 96, 052317 (2017)

    Article  ADS  Google Scholar 

  25. Ma, L.H., Kang, Y.H., Shi, Z.C., Song, J., Xia, Y.: Shortcuts to adiabatic for implementing controlled-not gate with superconducting quantum interference device qubits. Quantum Inf. Process. 17, 292–310 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  26. Liang, Z.T., Yue, X.X., Lv, Q., Du, Y.X., Huang, W., Yan, H., Zhu, S.L.: Proposal for implementing universal superadiabatic geometric quantum gates in nitrogen-vacancy centers. Phys. Rev. A 93, 040305(R) (2016)

    Article  ADS  Google Scholar 

  27. Blais, A., Huang, R.S., Wallraff, A., Girvin, S.M., Schoelkopf, R.J.: Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004)

    Article  ADS  Google Scholar 

  28. Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Huang, R.S., Majer, J., Kumar, S., Girvin, S.M., Schoelkopf, R.J.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004)

    Article  ADS  Google Scholar 

  29. Yang, C.P., Chu, S.I., Han, S.Y.: Possible realization of entanglement, logical gates, and quantum-information transfer with superconducting-quantum-interference-device qubits in cavity QED. Phys. Rev. A 67, 042311 (2003)

    Article  ADS  Google Scholar 

  30. Wu, C.W., Han, Y., Li, H.Y., Deng, Z.J., Chen, P.X., Li, C.Z.: Fast quantum phase gate in a small-detuning circuit QED model. Phys. Rev. A 82, 014303 (2010)

    Article  ADS  Google Scholar 

  31. Romero, G., Ballester, D., Wang, Y.M., Scarani, V., Solano, E.: Ultrafast quantum gates in circuit QED. Phys. Rev. Lett. 108, 120501 (2012)

    Article  ADS  Google Scholar 

  32. Chen, J.W., Wei, L.F.: Deterministic implementations of quantum gates with circuit QEDs via Stark-chirped rapid adiabatic passages. Phys. Lett. A 379, 2549–2555 (2015)

    Article  ADS  Google Scholar 

  33. Kumar, K.S., Vepsäläinen, A., Danilin, S., Paraoanu, G.S.: Stimulated Raman adiabatic passage in a three-level superconducting circuit. Nat. Commun. 10, 10628 (2016)

    Article  Google Scholar 

  34. Zheng, S.B.: Unconventional geometric quantum phase gates with a cavity QED system. Phys. Rev. A 70, 052320 (2004)

    Article  ADS  Google Scholar 

  35. Zheng, S.B.: Quantum logic gates for two atoms with a single resonant interaction. Phys. Rev. A 71, 062335 (2005)

    Article  ADS  Google Scholar 

  36. Møller, D., Madsen, L.B., Mølmer, K.: Geometric phase gates based on stimulated Raman adiabatic passage in tripod systems. Phys. Rev. A 75, 062302 (2007)

    Article  ADS  Google Scholar 

  37. Chen, X., Lizuain, I., Ruschhaupt, A., Guéry-Odelin, D., Muga, J.G.: Shortcut to adiabatic passage in two- and three-level atoms. Phys. Rev. Lett. 105, 123003 (2010)

    Article  ADS  Google Scholar 

  38. Ruschhaupt, A., Chen, X., Alonso, D., Muga, J.G.: Optimally robust shortcuts to population inversion in two-level quantum systems. New J. Phys. 14, 093040 (2012)

    Article  ADS  Google Scholar 

  39. del Campo, A.: Frictionless quantum quenches in ultracold gases: a quantum-dynamical microscope. Phys. Rev. A 84, 031606(R) (2011)

    Article  ADS  Google Scholar 

  40. Chen, X., Torrontegui, E., Muga, J.G.: Lewis–Riesenfeld invariants and transitionless quantum driving. Phys. Rev. A 83, 062116 (2011)

    Article  ADS  Google Scholar 

  41. Chen, X., Muga, J.G.: Engineering of fast population transfer in three-level systems. Phys. Rev. A 86, 033405 (2012)

    Article  ADS  Google Scholar 

  42. Ibáñez, S., Martínez-Garaot, S., Chen, X., Torrontegui, E., Muga, J.G.: Shortcuts to adiabaticity for non-Hermitian systems. Phys. Rev. A 84, 023415 (2011)

    Article  ADS  Google Scholar 

  43. Ibáñez, S., Chen, X., Torrontegui, E., Muga, J.G., Ruschhaupt, A.: Multiple Schödinger pictures and dynamics in shortcuts to adiabaticity. Phys. Rev. Lett. 109, 100403 (2012)

    Article  ADS  Google Scholar 

  44. Ibáñez, S., Chen, X., Muga, J.G.: Improving shortcuts to adiabaticity by iterative interaction pictures. Phys. Rev. A 87, 043402 (2013)

    Article  ADS  Google Scholar 

  45. Berry, M.V.: Transitionless quantum driving. J. Phys. A Math. Theor. 42, 365303 (2009)

    Article  MathSciNet  Google Scholar 

  46. Torrontegui, E., Ibáñez, S., Martínez-Garaot, S., Modugno, M., del Campo, A., Gué-Odelin, D., Ruschhaupt, A., Chen, X., Muga, J.G.: Shortcuts to adiabaticity. Adv. At. Mol. Opt. Phys. 62, 117–169 (2013)

    Article  ADS  Google Scholar 

  47. Chen, X., Ruschhaupt, A., Schmidt, S., del Campo, A., Gué-Odelin, D., Muga, J.G.: Fast optimal frictionless atom cooling in harmonic traps: shortcut to adiabaticity. Phys. Rev. Lett. 104, 063002 (2010)

    Article  ADS  Google Scholar 

  48. del Campo, A., Rams, M.M., Zurek, W.H.: Assisted finite-rate adiabatic passage across a quantum critical point: exact solution for the quantum Ising model. Phys. Rev. Lett. 109, 115703 (2012)

    Article  ADS  Google Scholar 

  49. Song, X.K., Zhang, H., Ai, Q., Qiu, J., Deng, F.G.: Shortcuts to adiabatic holonomic quantum computation in decoherence-free subspace with transitionless quantum driving algorithm. New J. Phys. 18, 023001 (2016)

    Article  ADS  Google Scholar 

  50. Martínez-Garaot, S., Rodriguez-Prieto, A., Muga, J.G.: Interferometer with a driven trapped ion. Phys. Rev. A 98, 043622 (2018)

    Article  ADS  Google Scholar 

  51. Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Shortcuts to adiabatic passage for multiparticles in distant cavities: applications to fast and noise-resistant quantum population transfer, entangled states’ preparation and transition. Laser Phys. Lett. 11, 115201 (2014)

    Article  ADS  Google Scholar 

  52. Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Efficient shortcuts to adiabatic passage for fast population transfer in multiparticle systems. Phys. Rev. A 89, 033856 (2014)

    Article  ADS  Google Scholar 

  53. Wu, Q.C., Chen, Y.H., Huang, B.H., Song, J., Xia, Y., Zheng, S.B.: Improving the stimulated Raman adiabatic passage via dissipative quantum dynamics. Opt. Express 24, 22847–22864 (2016)

    Article  ADS  Google Scholar 

  54. Lu, M., Xia, Y., Shen, L.T., Song, J., Nguyen, B.A.: Shortcuts to adiabatic passage for population transfer and maximum entanglement creation between two atoms in a cavity. Phys. Rev. A 89, 012326 (2014)

    Article  ADS  Google Scholar 

  55. Kang, Y.H., Chen, Y.H., Shi, Z.C., Song, J., Xia, Y.: Fast preparation of W states with superconducting quantum interference devices by using dressed states. Phys. Rev. A 94, 052311 (2016)

    Article  ADS  Google Scholar 

  56. Wu, Q.C., Chen, Y.H., Huang, B.H., Xia, Y., Song, J.: Reverse engineering of a nonlossy adiabatic Hamiltonian for non-Hermitian systems. Phys. Rev. A 94, 053421 (2016)

    Article  ADS  Google Scholar 

  57. Schaff, J.F., Song, X.L., Vignolo, P., Labeyrie, G.: Fast optimal transition between two equilibrium states. Phys. Rev. A 82, 033430 (2010)

    Article  ADS  Google Scholar 

  58. Schaff, J.F., Song, X.L., Capuzzi, P., Vignolo, P., Labeyrie, G.: Shortcut to adiabaticity for an interacting Bose–Einstein condensate. Europhys. Lett. 93, 23001 (2011)

    Article  ADS  Google Scholar 

  59. Tseng, S.Y., Chen, X.: Engineering of fast mode conversion in multimode waveguides. Opt. Lett. 37, 5118–5120 (2012)

    Article  ADS  Google Scholar 

  60. Bowler, R., Gaebler, J., Lin, Y., Tan, T.R., Hanneke, D., Jost, J.D., Home, J.P., Leibfried, D., Wineland, D.J.: Coherent diabatic ion transport and separation in a multizone trap array. Phys. Rev. Lett. 109, 080502 (2012)

    Article  ADS  Google Scholar 

  61. Walther, A., Ziesel, F., Ruster, T., Dawkins, S.T., Ott, K., Hettrich, M., Singer, K., Schmidt-Kaler, F., Poschinger, U.: Controlling fast transport of cold trapped ions. Phys. Rev. Lett. 109, 080501 (2012)

    Article  ADS  Google Scholar 

  62. Demirplak, M., Rice, S.A.: Adiabatic population transfer with control fields. J. Phys. Chem. A 107, 9937 (2003)

    Article  Google Scholar 

  63. Demirplak, M., Rice, S.A.: On the consistency, extremal, and global properties of counterdiabatic fields. J. Chem. Phys. 129, 154111 (2008)

    Article  ADS  Google Scholar 

  64. del Campo, A.: Shortcuts to adiabaticity by counterdiabatic driving. Phys. Rev. Lett. 111, 100502 (2013)

    Article  Google Scholar 

  65. Chen, Y.H., Wu, Q.C., Huang, B.H., Song, J., Xia, Y.: Method for constructing shortcuts to adiabaticity by a substitute of counterdiabatic driving terms. Phys. Rev. A 93, 052109 (2016)

    Article  ADS  Google Scholar 

  66. Song, X.K., Ai, Q., Qiu, J., Deng, F.G.: Physically feasible three-level transitionless quantum driving with multiple Schrödinger dynamics. Phys. Rev. A 93, 052324 (2016)

    Article  ADS  Google Scholar 

  67. Lai, Y.Z., Ling, J.Q., Müller-Kirsten, H.J.W., Zhou, J.G.: Time-dependent quantum systems and the invariant Hermitian operator. Phys. Rev. A 53, 3691–3693 (1996)

    Article  ADS  Google Scholar 

  68. Muga, J.G., Chen, X., Ruschhaupt, A., Guéry-Odelin, D.: Frictionless dynamics of Bose-Einstein condensates under fast trap variations. J. Phys. B 42, 241001 (2009)

    Article  ADS  Google Scholar 

  69. Baksic, A., Ribeiro, H., Clerk, A.A.: Speeding up adiabatic quantum state transfer by using dressed states. Phys. Rev. Lett. 116, 230503 (2016)

    Article  ADS  Google Scholar 

  70. Wu, J.L., Ji, X., Zhang, S.: Dressed-state scheme for a fast CNOT gate. Quantum Inf. Process. 16, 294–309 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  71. Huang, B.H., Kang, Y.H., Chen, Y.H., Wu, Q.C., Song, J., Xia, Y.: Fast quantum state engineering via universal SU(2) transformation. Phys. Rev. A 96, 022314 (2017)

    Article  ADS  Google Scholar 

  72. Blais, A., Gambetta, J., Wallraff, A., Schuster, D.I., Girvin, S.M., Devoret, M.H., Schoelkopf, R.J.: Quantum-information processing with circuit quantum electrodynamics. Phys. Rev. A 75, 032329 (2007)

    Article  ADS  Google Scholar 

  73. Feng, Z.B., Zhang, C.L.: Scalable geometric quantum computing with Cooper-pair box qubits in circuit QED. Phys. C 470, 240–243 (2010)

    Article  ADS  Google Scholar 

  74. Liu, Y.X., You, J.Q., Wei, L.F., Sun, C.P., Nori, F.: Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit. Phys. Rev. Lett. 95, 087001 (2005)

    Article  ADS  Google Scholar 

  75. Vion, D., Aassime, A., Cottet, A., Joyez, P., Pothier, H., Urbina, C., Esteve, D., Devoret, M.H.: Manipulating the quantum state of an electrical circuit. Science 296, 886–889 (2002)

    Article  ADS  Google Scholar 

  76. Vitanov, N.V.: Synthesis of arbitrary SU (3) transformations of atomic qutrits. Phys. Rev. A 85, 032331 (2012)

    Article  ADS  Google Scholar 

  77. Xiang, Z.L., Ashhab, S., You, J.Q., Nori, F.: Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623–653 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants Nos. 11575045, 11374054, 11674060 and 11747011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Lh., Kang, YH., Shi, ZC. et al. Shortcuts to adiabatic for implementing controlled phase gate with Cooper-pair box qubits in circuit quantum electrodynamics system. Quantum Inf Process 18, 65 (2019). https://doi.org/10.1007/s11128-019-2184-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2184-y

Keywords

Navigation