Skip to main content
Log in

Quantum Zeno effect by incomplete measurements

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A measurement process needs a time duration in many actual cases, such as the measurement on atomic system by the electron shelving technique. If this timescale is deficient, the measurement would be incomplete. Here, we investigate the quantum Zeno effect by incomplete measurements. We show that an efficient freeze of the quantum state by incomplete measurements is available. And interestingly, this state freeze can be more significant than that obtained in the complete measurement case if the parameters of incomplete measurements are properly set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Consider it by two extreme cases. When \(t_{\mathrm{m}}\) is large, the system S is barely transferred to \(|g\rangle \) according to the QZE theory by complete measurements. Thus few photons are emitted in the measurement processes. On the other hand, when \(t_{\mathrm{m}}\) is small, the measurement time is quite deficient for a photon radiation no matter which state the system S is in.

  2. The system S leaves \(|e\rangle \) two and more times being of higher orders of smallness and can be ignored. This assumption is rational particularly when the total coherent evolution time is \(t_\pi \) or less.

References

  1. Misra, B., Sudarshan, E.C.G.: The Zeno’s paradox in quantum theory. J. Math. Phys. 18, 756 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  2. Kofman, A.G., Kurizki, G.: Frequent observations accelerate decay: the anti-Zeno effect. Z. Fur Naturforschung A. 56, 83 (2001)

    ADS  Google Scholar 

  3. Itano, W.M., Heinzen, D.J., Bollinger, J.J., Wineland, D.J.: Quantum Zeno effect. Phys. Rev. A. 41, 2295 (1990)

    Article  ADS  Google Scholar 

  4. Peres, A., Ron, A.: Incomplete “collapse” and partial quantum Zeno effect. Phys. Rev. A. 42, 5720 (1990)

    Article  ADS  Google Scholar 

  5. Block, E., Berman, P.R.: Quantum Zeno effect and quantum Zeno paradox in atomic physics. Phys. Rev. A. 44, 1466 (1991)

    Article  ADS  Google Scholar 

  6. Wang, X.B., You, J.Q., Nori, F.: Quantum entanglement via two-qubit quantum Zeno dynamics. Phys. Rev. A. 77, 3195 (2008)

    Google Scholar 

  7. Alfredo, L.: Zeno and anti-Zeno effects in two-level systems. Phys. Rev. A. 67, 062113 (2003)

    Article  Google Scholar 

  8. Kofman, A.G., Kurizki, G.: Acceleration of quantum decay processes by frequent observations. Nature. 405, 546 (2000)

    Article  ADS  Google Scholar 

  9. Facchi, P., Nakazato, H., Pascazio, S.: From the quantum zeno to the inverse quantum zeno effect. Phys. Rev. Lett. 86, 2699 (2001)

    Article  ADS  Google Scholar 

  10. Cao, X., Ai, Q.: Sun Chang Pu and Nori Franco, The transition from quantum Zeno to anti-Zeno effects for a qubit in a cavity by varying the cavity frequency. Phys. Lett. A. 376, 349 (2012)

    Article  ADS  Google Scholar 

  11. Chaudhry, A.Z., Gong, J.: Zeno and anti-Zeno effects on dephasing. Phys. Rev. A. 90, 165 (2014)

    Google Scholar 

  12. Wu, W., Lin, H.Q.: Quantum Zeno and anti-Zeno effects in quantum dissipative systems. Phys. Rev. A. 95, 042132 (2017)

    Article  ADS  Google Scholar 

  13. Adam, Z.C.: A general framework for the Quantum Zeno and anti-Zeno effects. Sci. Rep. 6, 29497 (2016)

    Article  ADS  Google Scholar 

  14. Zhou, Z., Lv, Z., Zheng, H., et al.: Quantum Zeno and anti-Zeno effects in open quantum systems. Phys. Rev. A. 96(3), 032101 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  15. Fischer, M.C., Gutierrez-Medina, B., Raizen, M.G.: Observation of the quantum zeno and anti-zeno effects in an unstable system. Phys. Rev. Lett. 87, 040402 (2001)

    Article  ADS  Google Scholar 

  16. Barone, A., Kurizki, G., Kofman, A.G.: Dynamical control of macroscopic quantum tunneling. Phys. Rev. Lett. 92, 200403 (2004)

    Article  ADS  Google Scholar 

  17. Chen, P.W., Tsai, D.B., Bennett, P.: Quantum Zeno and anti-Zeno effect of a nanomechanical resonator measured by a point contact. Phys. Rev. B. 81, 115307 (2010)

    Article  ADS  Google Scholar 

  18. Keisuke, F., Katsuji, Y.: Anti-Zeno effect for quantum transport in disordered systems. Phys. Rev. A. 82, 5929 (2010)

    Google Scholar 

  19. Harrington, P.M., Monroe, J.T., Murch, K.W.: Quantum Zeno effects from measurement controlled qubit-bath interactions. Phys. Rev. Lett. 118, 240401 (2017)

    Article  ADS  Google Scholar 

  20. Zhang, M.C., Wei, W., He, L.Z., Xie, Y., ChunWang, W., Li, Q., Chen, P.X.: Demonstration of quantum anti-Zeno effect with a single trapped ion. Chin. Phys. B. 27(9), 090305 (2018)

    Article  ADS  Google Scholar 

  21. Koshino, K., Shimizu, A.: Quantum Zeno effect by general measurements. Phys. Rep. 412(4), 191 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  22. Koshino, K., Shimizu, A.: Quantum Zeno effect for exponentially decaying systems. Phys. Rev. Lett. 92(3), 030401 (2004)

    Article  ADS  Google Scholar 

  23. Koshino, K.: Quantum anti-Zeno effect by false measurements. Phys. Rev. Lett. 93(3), 030401 (2004)

    Article  ADS  Google Scholar 

  24. David, L., Martinmartinez, E., Kempf, A.: Perfect Zeno effect through imperfect measurements at a finite frequency. Phys. Rev. A. 91, 022106 (2015)

    Article  ADS  Google Scholar 

  25. Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351 (1988)

    Article  ADS  Google Scholar 

  26. Nagourney, W., Sandberg, J., Dehmelt, H.: Shelved optical electron amplifier: observation of quantum jumps. Phys. Rev. Lett. 56, 2797 (1986)

    Article  ADS  Google Scholar 

  27. Sasura, M., Buzek, V.: Cold trapped ions as quantum information processors. Opt. Acta Int. J. Opt. 49, 1593 (2002)

    MathSciNet  MATH  Google Scholar 

  28. Dalibard, J.: Wave-function approach to dissipative processes in quantum optics. Phys. Rev. Lett. 68(5), 580 (1992)

    Article  ADS  Google Scholar 

  29. Plenio, M.B., Knight, P.L.: The quantum-jump approach to dissipative dynamics in quantum optics. Rev. Mod. Phys. 70(1), 101 (1997)

    Article  ADS  Google Scholar 

  30. Katz, N., Ansmann, M., Bialczak, R.C., et al.: Coherent state evolution in a superconducting qubit from partial-collapse measurement. Science 312(5779), 1498 (2006)

    Article  ADS  Google Scholar 

  31. Katz, N., Neeley, M., Ansmann, M., et al.: Reversal of the weak measurement of a quantum state in a superconducting phase qubit. Phys. Rev. Lett. 101(20), 200401 (2008)

    Article  ADS  Google Scholar 

  32. Ai, Q., Xu, D., Yi, S., Kofman, A.G., Sun, C.P., Nori, F.: Quantum anti-Zeno effect without wave function reduction. Sci. Rep. 3, 1752 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Basic Research Program of China under Grant No. 2016YFA0301903; the National Natural Science Foundation of China under Grants No. 11174370, No. 11304387, No. 61632021, No. 11305262, No. 11574398 and No. 61205108; and the Research Plan Project of National University of Defense Technology under Grant No. ZK16-03-04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingxing Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

It is instructive to consider how the parameter \(\varDelta \) affects the QZE induced by incomplete measurements. After an incomplete measurement, we assume the system S evolves to a state expressed by the density matrix form \(\rho ^\mathrm{S} = \mathrm{Tr_A}\rho \), where \(\rho \) is the density matrix describing product state Eq. (5). Define two phase terms of the Bloch vector by \(u = \rho _{ge}^\mathrm{S} + \rho _{eg}^\mathrm{S} = \langle \sigma _x\rangle \) and \(v = (\rho _{ge}^\mathrm{S} - \rho _{eg}^\mathrm{S})/\mathrm{i} = \langle \sigma _y\rangle \) where \(\rho _{ge}^\mathrm{S}\) and \(\rho _{eg}^\mathrm{S}\) are nondiagonal elements of \(\rho ^\mathrm{S}\); thus, one can find the evolution of them satisfies

$$\begin{aligned} {\left\{ \begin{array}{ll} u = u(0) \cdot \mathrm{Re}[a] - v(0) \cdot \mathrm{Im}[a], \nonumber \\ v = v(0) \cdot \mathrm{Re}[a] + u(0) \cdot \mathrm{Im}[a]. \end{array}\right. } \end{aligned}$$

\(\mathrm{Re}[a]=e^{-\gamma t_{\mathrm{m}}}\cos {(t_{\mathrm{m}}\varDelta )}\), \(\mathrm{Im}[a] = e^{-\gamma t_{\mathrm{m}}}\sin {(t_{\mathrm{m}}\varDelta )}\) are real and imaginary parts of a. If \(\varDelta \ne 0\), it implies that the Bloch vector of system S will rotate by \(t_{\mathrm{m}}\varDelta \) around \(\sigma _z\) axis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Wu, C., Xie, Y. et al. Quantum Zeno effect by incomplete measurements. Quantum Inf Process 18, 97 (2019). https://doi.org/10.1007/s11128-019-2194-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2194-9

Keywords

Navigation