Skip to main content
Log in

Remote preparation of four-qubit states via two-qubit maximally entangled states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, an efficient scheme of remotely preparing four-qubit quantum states via two-qubit maximally entangled states is proposed. This scheme can be accomplished by using appropriate unitary transformations and some classical communication. The detailed processes for preparation of four-qubit states are presented in the general case and two special cases, respectively. The method of constructing special measurement basis in general case is provided, and the similar methods for real-parameter state case and equatorial state case are also discussed. Meanwhile, the probabilities of successful preparation under each case are calculated in our schemes. The results show that the successful probability is only 1 / 16 in the general case, and the probability can reach up to 100% when the relative phase factors are zero or the amplitude parameters are 1 / 4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lo, H.K.: Classical communication cost in distributed quantum information processing–a generalization of quantum communication complexity. Phys. Rev. A. 62(1), 012313 (2000)

    Article  ADS  Google Scholar 

  2. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87(7), 077902 (2001)

    Article  ADS  Google Scholar 

  3. Bennett, C.H., Hayden, P., Leung, D.W., Shor, P.W., Winter, A.: Remote preparation of quantum states. IEEE Trans. Inf. Theory 51(1), 56–74 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Situ, H.Z.: Controlled simultaneous teleportation and dense coding. Int. J. Theor. Phys. 53(3), 1003–1009 (2014)

    Article  MATH  Google Scholar 

  5. Li, Y.H., Li, X.L., Nie, L.P., Sang, M.H.: Quantum teleportation of three and four-qubit state using multi-qubit cluster states. Int. J. Theor. Phys. 55(3), 1820–1823 (2016)

    Article  MATH  Google Scholar 

  6. Dai, H.Y., Chen, P.X., Li, C.Z.: Probabilistic teleportation of an arbitrary two-particle state by a partially entangled GHZ state and W state. Opt. Commun. 231(1), 281–287 (2004)

    Article  ADS  Google Scholar 

  7. Bennett, C.H., Brassard, G., Grepeau, C., Jozsa, R., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. Zhao, N., Li, M., Chen, N., Zhu, C.H., Pei, C.X.: Quantum teleportation of eight-qubit state via six-qubit cluster state. Int. J. Theor. Phys. 57(2), 516–522 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A. 63(63), 94–98 (2001)

    Google Scholar 

  10. Hua, C., Chen, Y.X.: Deterministic remote preparation of an arbitrary qubit state using a partially entangled state and finite classical communication. Quantum Inf. Process. 15(11), 1–11 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Yang, R.Y., Liu, J.M.: Enhancing the fidelity of remote state preparation by partial measurements. Quantum Inf. Process. 16(5), 125 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Wei, J.H., Dai, H.Y., Zhang, M.: Two efficient schemes for probabilistic remote state preparation and the combination of both schemes. Quantum Inf. Process. 13(9), 2115–2125 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. Dai, H.Y., Zhang, M., Zhang, Z.R., Xi, Z.R.: Probabilistic remote preparation of a four-particle entangled W state for the general case and for all kinds of the special cases. Commun. Theor. Phys. 60(3), 313–322 (2013)

    Article  MATH  ADS  Google Scholar 

  14. Dai, H.Y., Chen, P.X., Liang, L.M., Li, C.Z.: Classical communication cost and remote preparation of the four-particle GHZ class state. Phys. Lett. A. 355(4), 285–288 (2006)

    Article  ADS  Google Scholar 

  15. Wei, J.H., Shi, L., Xu, Z.Y., Ni, Y.H., Han, Z.X., Hu, Q.Q., Jiang, J.: Probabilistic controlled remote state preparation of an arbitrary two-qubit state via partially entangled states with multi parties. Int. J. Quantum. Inf. 16, 1850001 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Huang, L., Zhao, H.X.: Controlled remote state preparation of an arbitrary two-qubit state by using GHZ states. Int. J. Theor. Phys. 56(3), 1–5 (2017)

    MATH  ADS  Google Scholar 

  17. Sang, M.H., Nie, Y.Y.: Deterministic tripartite controlled remote state preparation. Int. J. Theor. Phys. 56(10), 3092–3095 (2017)

    Article  MATH  Google Scholar 

  18. Adepoju, A.G., Falaye, B.J., Sun, G.H., Camacho, O., Dong, S.H.: Joint remote state preparation of two-qubit equatorial state in quantum noisy channels. Phys. Rev. A. 381(6), 581–587 (2017)

    Google Scholar 

  19. Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90(5), 057901 (2003)

    Article  ADS  Google Scholar 

  20. Li, X., Ghose, S.: Optimal joint remote state preparation of equatorial states. Quantum Inf. Process. 14(12), 4585–4592 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  21. Dai, H.Y., Chen, P.X., Zhang, M., Li, C.Z.: Remote preparation of an entangled two-qubit state with three parties. Chin. Phys. B 17(1), 27 (2008)

    Article  ADS  Google Scholar 

  22. Wang, C., Zeng, Z., Li, X.H.: Controlled remote state preparation via partially entangled quantum channel. Quantum Inf. Process. 14(3), 1077–1089 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  23. Liu, H.H., Cheng, L.Y., Shao, X.Q., Sun, L.L., Zhang, S., Yeon, K.H.: Joint remote state preparation of arbitrary two- and three-particle states. Int J. Theor. Phys. 50(10), 3023–3032 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhan, Y.B., Ma, P.C.: Deterministic joint remote preparation of arbitrary two- and three-qubit entangled states. Quantum Inf. Process. 12(2), 997–1009 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  25. Wei, J.H., Shi, L., Ma, L.H., Xue, Y., Zhuang, X.C., Kang, Q.Y.: Remote preparation of an arbitrary multi-qubit state via two-qubit entangled states. Quantum Inf. Process. 16(10), 260 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  26. Wei, J.H., Dai, H.Y., Zhang, M., Yang, L., Kuang, J.: Two novel schemes for probabilistic remote state preparation and the physical realization via the linear optics. Int. J. Quantum Inf. 14(1), 1650003 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dai, H.Y., Zhang, M., Chen, J.M.: Probabilistic remote preparation of a high-dimensional equatorial multiqubit with four-party and classical communication cost. Chin. Phys. B 20(5), 050310 (2011)

    Article  ADS  Google Scholar 

  28. Peng, X., Zhu, X., Fang, X., Feng, M., Liu, M., Gao, K.: Experimental implementation of remote state preparation by nuclear magnetic resonance. Phys. Rev. A 306(5), 271–276 (2002)

    Google Scholar 

  29. Ma, P.C., Chen, G.B., Li, X.W., Zhang, J., Zhan, Y.B.: Asymmetric controlled bidirectional remote state preparation by using a ten-qubit entangled state. Int J. Theor. Phys. 56(9), 2716–2723 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Dong, C., Zhao, S.H., Deng, M.Y.: Measurement-device-independent quantum key distribution with multiple crystal heralded source with post-selection. Quantum Inf. Process. 17(3), 50 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Y. Zhu for helpful discussions. This work is supported by the Program for National Natural Science Foundation of China (Grant Nos. 61671475, 61271250, 61803382) and Natural Science Basic Research Plan in Shaanxi Province of China (No. 2018JQ6020) and China Postdoctoral Science Foundation Funded Project (Project No.2018M643869).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiahua Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The parameter matrix \(M_4\) used for constructing projective measurement basis in preparing arbitrary four-qubit state is shown as below. It can be found that the matrix in three-qubit preparation given by Eq. (12) exactly forms the blue elements in the right upper corner in \(M_4\).

(25)

The measurement basis \(\{|\tau _i\rangle |i=0,1,\ldots ,15\}\) used in preparing four-qubit real-parameter state mentioned in Sect. 3.1 is shown as below

$$\begin{aligned} \left( \begin{array}{c} |\tau _0\rangle \\ |\tau _1\rangle \\ |\tau _2\rangle \\ |\tau _3\rangle \\ |\tau _4\rangle \\ |\tau _5\rangle \\ |\tau _6\rangle \\ |\tau _7\rangle \\ |\tau _8\rangle \\ |\tau _9\rangle \\ |\tau _{10}\rangle \\ |\tau _{11}\rangle \\ |\tau _{12}\rangle \\ |\tau _{13}\rangle \\ |\tau _{14}\rangle \\ |\tau _{15}\rangle \end{array} \right) = \left( \begin{array}{r@{\quad }r@{\quad }r@{\quad }r@{\quad }r@{\quad }r@{\quad }r@{\quad }r@{\quad }r} a_0 &{} a_1 &{} a_2 &{} a_3 &{} a_4 &{} a_5 &{} a_6 &{} a_7 &{} a_8\\ a_1 &{} -a_0 &{} a_3 &{} -a_2 &{} a_5 &{} -a_4 &{} -a_7 &{} a_6 &{} a_9\\ a_2 &{} -a_3 &{} -a_0 &{} a_1 &{} a_6 &{} a_7 &{} -a_4 &{} -a_5 &{} a_{10}\\ a_3 &{} a_2 &{} -a_1 &{} -a_0 &{} a_7 &{} -a_6 &{} a_5 &{} -a_4 &{} a_{11}\\ a_4 &{} -a_5 &{} -a_6 &{} -a_7 &{} -a_0 &{} a_1 &{} a_2 &{} a_3 &{} a_{12}\\ a_5 &{} a_4 &{} -a_7 &{} a_6 &{} -a_1 &{} -a_0 &{} -a_3 &{} a_2 &{} a_{13}\\ a_6 &{} a_7 &{} a_4 &{} -a_5 &{} -a_2 &{} a_3 &{} -a_0 &{} -a_1 &{} a_{14}\\ a_7 &{} -a_6 &{} a_5 &{} a_4 &{} -a_3 &{} -a_2 &{} a_1 &{} -a_0 &{} a_{15}\\ a_8 &{} -a_9 &{} -a_{10} &{} -a_{11} &{} -a_{12} &{} -a_{13} &{} -a_{14} &{} -a_{15} &{} -a_0 \\ a_9 &{} a_8 &{} -a_{11} &{} a_{10} &{} -a_{13} &{} a_{12} &{} a_{15} &{} -a_{14} &{} -a_1 \\ a_{10}&{} a_{11} &{} a_8 &{} -a_9 &{} -a_{14} &{} -a_{15} &{} a_{12} &{} a_{13} &{} -a_2 \\ a_{11}&{}-a_{10} &{} a_9 &{} a_8 &{} a_{15} &{} -a_{14} &{} a_{13} &{} a_{12} &{} -a_3 \\ a_{12}&{} a_{13} &{} a_{14} &{} -a_{15} &{} a_8 &{} a_9 &{} -a_{10} &{} -a_{11} &{} -a_4 \\ a_{13}&{}-a_{12} &{} a_{15} &{} a_{14} &{} -a_9 &{} -a_8 &{} a_{11} &{} a_{10} &{} -a_5 \\ a_{14}&{}-a_{15} &{} -a_{12} &{} -a_{13} &{} a_{10} &{} -a_{11} &{} a_8 &{} a_9 &{} -a_6 \\ a_{15}&{} a_{14} &{} -a_{13} &{} -a_{12} &{} a_{11} &{} -a_{10} &{} -a_9 &{} a_8 &{} -a_7 \\ \end{array}\right. \nonumber \\ \left. \begin{array}{r@{\quad }r@{\quad }r@{\quad }r@{\quad }r@{\quad }r@{\quad }r} a_9 &{} a_{10} &{} a_{11} &{} a_{12} &{} a_{13} &{} a_{14} &{} a_{15}\\ -a_8 &{} -a_{11} &{} a_{10} &{} -a_{13} &{} a_{12} &{} a_{15} &{} -a_{14}\\ a_{11} &{} -a_8 &{} -a_9 &{} -a_{14} &{} -a_{15} &{} a_{12} &{} a_{13}\\ -a_{10} &{} a_9 &{} -a_8 &{} a_{15} &{} -a_{14} &{} a_{13} &{} a_{12}\\ a_{13} &{} a_{14} &{} -a_{15} &{} -a_8 &{} a_9 &{}-a_{10} &{} -a_{11}\\ -a_{12} &{} a_{15} &{} a_{14} &{} -a_9 &{} -a_8 &{} a_{11} &{} a_{10}\\ -a_{15} &{} -a_{12} &{} -a_{13} &{} a_{10} &{} -a_{11} &{}-a_8 &{} a_9\\ a_{14} &{} -a_{13} &{} -a_{12} &{} a_{11} &{} -a_{10} &{}-a_9 &{} -a_8\\ a_1 &{} a_2 &{} a_3 &{} a_4 &{} a_5 &{} a_6 &{} a_7\\ -a_0 &{} -a_3 &{} a_2 &{} -a_5 &{} a_4 &{} a_7 &{} -a_6\\ a_3 &{} -a_0 &{} -a_1 &{} -a_6 &{} -a_7 &{} a_4 &{} a_5\\ -a_2 &{} a_1 &{} -a_0 &{} -a_7 &{} -a_6 &{} a_5 &{} -a_4\\ a_5 &{} a_6 &{} a_7 &{} -a_0 &{} a_1 &{} -a_2 &{} a_3\\ -a_4 &{} a_7 &{} a_6 &{} -a_1 &{} -a_0 &{} -a_3 &{} -a_2\\ -a_7 &{} -a_4 &{} -a_5 &{} a_2 &{} a_3 &{} -a_0 &{} a_1\\ a_6 &{} -a_5 &{} a_4 &{} -a_3 &{} a_2 &{} -a_1 &{} -a_0\\ \end{array} \right) \left( \begin{array}{c} |0000\rangle \\ |0001\rangle \\ |0010\rangle \\ |0011\rangle \\ |0100\rangle \\ |0101\rangle \\ |0110\rangle \\ |0111\rangle \\ |1000\rangle \\ |1001\rangle \\ |1010\rangle \\ |1011\rangle \\ |1100\rangle \\ |1101\rangle \\ |1110\rangle \\ |1111\rangle \\ \end{array} \right) \qquad \end{aligned}$$
(26)

The measurement basis \(\{|\tau _i\rangle |i=0,1,\ldots ,15\}\) used in preparing four-qubit equatorial state mentioned in Sect. 3.2 is shown as below

$$\begin{aligned} |\tau _0\rangle= & {} 1{/}4(|0000\rangle +e^{i\phi _1}|0001\rangle +e^{i\phi _2}|0010\rangle +e^{i\phi _3}|0011\rangle \nonumber \\&+\,e^{i\phi _4}|0100\rangle +e^{i\phi _5}|0101\rangle +e^{i\phi _6}|0110\rangle +e^{i\phi _7}|0111\rangle \nonumber \\&+\,e^{i\phi _8}|1000\rangle +e^{i\phi _9}|1001\rangle +e^{i\phi _{10}}|1010\rangle +e^{i\phi _{11}}|1011\rangle \nonumber \\&+\,e^{i\phi _{12}}|1100\rangle +e^{i\phi _{13}}|1101\rangle +e^{i\phi _{14}}|1110\rangle +e^{i\phi _{15}}|1111\rangle )\nonumber \\ |\tau _1\rangle= & {} 1{/}4(|0000\rangle -e^{i\phi _1}|0001\rangle +e^{i\phi _2}|0010\rangle -e^{i\phi _3}|0011\rangle \nonumber \\&+\,e^{i\phi _4}|0100\rangle -e^{i\phi _5}|0101\rangle +e^{i\phi _6}|0110\rangle -e^{i\phi _7}|0111\rangle \nonumber \\&+\,e^{i\phi _8}|1000\rangle -e^{i\phi _9}|1001\rangle +e^{i\phi _{10}}|1010\rangle -e^{i\phi _{11}}|1011\rangle \nonumber \\&+\,e^{i\phi _{12}}|1100\rangle -e^{i\phi _{13}}|1101\rangle +e^{i\phi _{14}}|1110\rangle -e^{i\phi _{15}}|1111\rangle )\nonumber \\ |\tau _2\rangle= & {} 1{/}4(|0000\rangle -e^{i\phi _1}|0001\rangle -e^{i\phi _2}|0010\rangle +e^{i\phi _3}|0011\rangle \nonumber \\&+\,e^{i\phi _4}|0100\rangle +e^{i\phi _5}|0101\rangle -e^{i\phi _6}|0110\rangle -e^{i\phi _7}|0111\rangle \nonumber \\&+\,e^{i\phi _8}|1000\rangle +e^{i\phi _9}|1001\rangle -e^{i\phi _{10}}|1010\rangle -e^{i\phi _{11}}|1011\rangle \nonumber \\&-\,e^{i\phi _{12}}|1100\rangle -e^{i\phi _{13}}|1101\rangle +e^{i\phi _{14}}|1110\rangle +e^{i\phi _{15}}|1111\rangle )\nonumber \\ |\tau _3\rangle= & {} 1{/}4(|0000\rangle +e^{i\phi _1}|0001\rangle -e^{i\phi _2}|0010\rangle -e^{i\phi _3}|0011\rangle \nonumber \\&+\,e^{i\phi _4}|0100\rangle -e^{i\phi _5}|0101\rangle +e^{i\phi _6}|0110\rangle -e^{i\phi _7}|0111\rangle \nonumber \\&+\,e^{i\phi _8}|1000\rangle -e^{i\phi _9}|1001\rangle +e^{i\phi _{10}}|1010\rangle -e^{i\phi _{11}}|1011\rangle \nonumber \\&+\,e^{i\phi _{12}}|1100\rangle -e^{i\phi _{13}}|1101\rangle +e^{i\phi _{14}}|1110\rangle +e^{i\phi _{15}}|1111\rangle )\nonumber \\ |\tau _4\rangle= & {} 1{/}4(|0000\rangle -e^{i\phi _1}|0001\rangle -e^{i\phi _2}|0010\rangle -e^{i\phi _3}|0011\rangle \nonumber \\&-\,e^{i\phi _4}|0100\rangle +e^{i\phi _5}|0101\rangle +e^{i\phi _6}|0110\rangle +e^{i\phi _7}|0111\rangle \nonumber \\&+\,e^{i\phi _8}|1000\rangle +e^{i\phi _9}|1001\rangle +e^{i\phi _{10}}|1010\rangle -e^{i\phi _{11}}|1011\rangle \nonumber \\&-\,e^{i\phi _{12}}|1100\rangle +e^{i\phi _{13}}|1101\rangle -e^{i\phi _{14}}|1110\rangle -e^{i\phi _{15}}|1111\rangle )\nonumber \\ |\tau _5\rangle= & {} 1{/}4(|0000\rangle +e^{i\phi _1}|0001\rangle -e^{i\phi _2}|0010\rangle +e^{i\phi _3}|0011\rangle \nonumber \\&-\,e^{i\phi _4}|0100\rangle -e^{i\phi _5}|0101\rangle -e^{i\phi _6}|0110\rangle +e^{i\phi _7}|0111\rangle \nonumber \\&+\,e^{i\phi _8}|1000\rangle -e^{i\phi _9}|1001\rangle +e^{i\phi _{10}}|1010\rangle +e^{i\phi _{11}}|1011\rangle \nonumber \\&-\,e^{i\phi _{12}}|1100\rangle -e^{i\phi _{13}}|1101\rangle +e^{i\phi _{14}}|1110\rangle +e^{i\phi _{15}}|1111\rangle )\nonumber \\ |\tau _6\rangle= & {} 1{/}4(|0000\rangle +e^{i\phi _1}|0001\rangle +e^{i\phi _2}|0010\rangle -e^{i\phi _3}|0011\rangle \nonumber \\&-\,e^{i\phi _4}|0100\rangle +e^{i\phi _5}|0101\rangle -e^{i\phi _6}|0110\rangle -e^{i\phi _7}|0111\rangle \nonumber \\&+\,e^{i\phi _8}|1000\rangle -e^{i\phi _9}|1001\rangle -e^{i\phi _{10}}|1010\rangle -e^{i\phi _{11}}|1011\rangle \nonumber \\&+\,e^{i\phi _{12}}|1100\rangle -e^{i\phi _{13}}|1101\rangle -e^{i\phi _{14}}|1110\rangle +e^{i\phi _{15}}|1111\rangle )\nonumber \\ |\tau _7\rangle= & {} 1{/}4(|0000\rangle -e^{i\phi _1}|0001\rangle +e^{i\phi _2}|0010\rangle +e^{i\phi _3}|0011\rangle \nonumber \\&-\,e^{i\phi _4}|0100\rangle -e^{i\phi _5}|0101\rangle +e^{i\phi _6}|0110\rangle -e^{i\phi _7}|0111\rangle \nonumber \\&+\,e^{i\phi _8}|1000\rangle +e^{i\phi _9}|1001\rangle -e^{i\phi _{10}}|1010\rangle -e^{i\phi _{11}}|1011\rangle \nonumber \\&+\,e^{i\phi _{12}}|1100\rangle -e^{i\phi _{13}}|1101\rangle -e^{i\phi _{14}}|1110\rangle -e^{i\phi _{15}}|1111\rangle )\nonumber \\ |\tau _8\rangle= & {} 1{/}4(|0000\rangle -e^{i\phi _1}|0001\rangle -e^{i\phi _2}|0010\rangle -e^{i\phi _3}|0011\rangle \nonumber \\&-\,e^{i\phi _4}|0100\rangle -e^{i\phi _5}|0101\rangle -e^{i\phi _6}|0110\rangle -e^{i\phi _7}|0111\rangle \nonumber \\&-\,e^{i\phi _8}|1000\rangle +e^{i\phi _9}|1001\rangle +e^{i\phi _{10}}|1010\rangle +e^{i\phi _{11}}|1011\rangle \nonumber \\&+\,e^{i\phi _{12}}|1100\rangle +e^{i\phi _{13}}|1101\rangle +e^{i\phi _{14}}|1110\rangle +e^{i\phi _{15}}|1111\rangle )\nonumber \\ |\tau _9\rangle= & {} 1{/}4(|0000\rangle +e^{i\phi _1}|0001\rangle -e^{i\phi _{2}}|0010\rangle +e^{i\phi _{3}}|0011\rangle \nonumber \\&-\,e^{i\phi _{4}}|0100\rangle +e^{i\phi _{5}}|0101\rangle +e^{i\phi _{6}}|0110\rangle -e^{i\phi _{7}}|0111\rangle \nonumber \\&-\,e^{i\phi _{8}}|1000\rangle -e^{i\phi _{9}}|1001\rangle -e^{i\phi _{10}}|1010\rangle +e^{i\phi _{11}}|1011\rangle \nonumber \\&-\,e^{i\phi _{12}}|1100\rangle +e^{i\phi _{13}}|1101\rangle +e^{i\phi _{14}}|1110\rangle -e^{i\phi _{15}}|1111\rangle )\nonumber \\ |\tau _{10}\rangle= & {} 1{/}4(|0000\rangle +e^{i\phi _1}|0001\rangle +e^{i\phi _{2}}|0010\rangle -e^{i\phi _{3}}|0011\rangle \nonumber \\&-\,e^{i\phi _{4}}|0100\rangle -e^{i\phi _{5}}|0101\rangle +e^{i\phi _6}|0110\rangle +e^{i\phi _7}|0111\rangle \nonumber \\&-\,e^{i\phi _8}|1000\rangle -e^{i\phi _9}|1001\rangle +e^{i\phi _{10}}|1010\rangle -e^{i\phi _{11}}|1011\rangle \nonumber \\&-\,e^{i\phi _{12}}|1100\rangle -e^{i\phi _{13}}|1101\rangle +e^{i\phi _{14}}|1110\rangle -e^{i\phi _{15}}|1111\rangle )\nonumber \\ |\tau _{11}\rangle= & {} 1{/}4(|0000\rangle -e^{i\phi _1}|0001\rangle +e^{i\phi _{2}}|0010\rangle +e^{i\phi _{3}}|0011\rangle \nonumber \\&+\,e^{i\phi _{4}}|0100\rangle -e^{i\phi _{5}}|0101\rangle +e^{i\phi _6}|0110\rangle +e^{i\phi _7}|0111\rangle \nonumber \\&-\,e^{i\phi _8}|1000\rangle -e^{i\phi _9}|1001\rangle +e^{i\phi _{10}}|1010\rangle -e^{i\phi _{11}}|1011\rangle \nonumber \\&-\,e^{i\phi _{12}}|1100\rangle -e^{i\phi _{13}}|1101\rangle +e^{i\phi _{14}}|1110\rangle -e^{i\phi _{15}}|1111\rangle )\nonumber \\ |\tau _{12}\rangle= & {} 1{/}4(|0000\rangle +e^{i\phi _1}|0001\rangle +e^{i\phi _{2}}|0010\rangle -e^{i\phi _{3}}|0011\rangle \nonumber \\&+\,e^{i\phi _{4}}|0100\rangle +e^{i\phi _{5}}|0101\rangle -e^{i\phi _6}|0110\rangle -e^{i\phi _7}|0111\rangle \nonumber \\&-\,e^{i\phi _8}|1000\rangle +e^{i\phi _9}|1001\rangle +e^{i\phi _{10}}|1010\rangle +e^{i\phi _{11}}|1011\rangle \nonumber \\&-\,e^{i\phi _{12}}|1100\rangle +e^{i\phi _{13}}|1101\rangle -e^{i\phi _{14}}|1110\rangle +e^{i\phi _{15}}|1111\rangle )\nonumber \\ |\tau _{13}\rangle= & {} 1{/}4(|0000\rangle -e^{i\phi _1}|0001\rangle +e^{i\phi _{2}}|0010\rangle +e^{i\phi _{3}}|0011\rangle \nonumber \\&-\,e^{i\phi _{4}}|0100\rangle -e^{i\phi _{5}}|0101\rangle +e^{i\phi _6}|0110\rangle +e^{i\phi _7}|0111\rangle \nonumber \\&-\,e^{i\phi _8}|1000\rangle -e^{i\phi _9}|1001\rangle +e^{i\phi _{10}}|1010\rangle +e^{i\phi _{11}}|1011\rangle \nonumber \\&-\,e^{i\phi _{12}}|1100\rangle -e^{i\phi _{13}}|1101\rangle -e^{i\phi _{14}}|1110\rangle -e^{i\phi _{15}}|1111\rangle )\nonumber \\ |\tau _{14}\rangle= & {} 1{/}4(|0000\rangle -e^{i\phi _1}|0001\rangle -e^{i\phi _{2}}|0010\rangle -e^{i\phi _{3}}|0011\rangle \nonumber \\&+\,e^{i\phi _{4}}|0100\rangle -e^{i\phi _{5}}|0101\rangle +e^{i\phi _6}|0110\rangle +e^{i\phi _7}|0111\rangle \nonumber \\&-\,e^{i\phi _8}|1000\rangle -e^{i\phi _9}|1001\rangle -e^{i\phi _{10}}|1010\rangle -e^{i\phi _{11}}|1011\rangle \nonumber \\&+\,e^{i\phi _{12}}|1100\rangle +e^{i\phi _{13}}|1101\rangle -e^{i\phi _{14}}|1110\rangle +e^{i\phi _{15}}|1111\rangle )\nonumber \\ |\tau _{15}\rangle= & {} 1{/}4(|0000\rangle +e^{i\phi _1}|0001\rangle -e^{i\phi _{2}}|0010\rangle -e^{i\phi _{3}}|0011\rangle \nonumber \\&+\,e^{i\phi _{4}}|0100\rangle -e^{i\phi _{5}}|0101\rangle -e^{i\phi _6}|0110\rangle +e^{i\phi _7}|0111\rangle \nonumber \\&-\,e^{i\phi _8}|1000\rangle +e^{i\phi _9}|1001\rangle -e^{i\phi _{10}}|1010\rangle +e^{i\phi _{11}}|1011\rangle \nonumber \\&-\,e^{i\phi _{12}}|1100\rangle +e^{i\phi _{13}}|1101\rangle -e^{i\phi _{14}}|1110\rangle -e^{i\phi _{15}}|1111\rangle ) \end{aligned}$$
(27)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Y., Shi, L., Da, X. et al. Remote preparation of four-qubit states via two-qubit maximally entangled states. Quantum Inf Process 18, 103 (2019). https://doi.org/10.1007/s11128-019-2205-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2205-x

Keywords

Navigation