Skip to main content
Log in

Continuous-time quantum walks on strongly regular graphs with loops and its application to spatial search for multiple marked vertices

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The continuous-time quantum walk (CTQW) on the strongly regular graph is studied in this paper, and the exact transition probability distribution between any two vertices of the graph is provided by using the method of counting the walks between these two vertices. The CTQW is also considered on the perturbed strongly regular graph (SRG) by adding multiple loops on given vertices. Spatial search using CTQW can be regarded as a special case of CTQW on the perturbed SRG by adding loops. Combined with the approach of walk counting, the proper parameter settings and search time of spatial search for both a single marked vertex and two marked vertices are provided. The results show that both kinds of spatial search can be undertaken in \(O(\sqrt{N})\) time in a degree k SRG with N vertices, by setting jump rate of CTQW to be 1 / k.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58(2), 915–928 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  2. Kempe, J.: Quantum random walks: an introductory overview. Contemp. Phys. 44(4), 307–327 (2003)

    Article  ADS  Google Scholar 

  3. Ambainis, A.: Quantum walks and their algorithmic applications. Int. J. Quantum Inf. 1(04), 507–518 (2003)

    Article  Google Scholar 

  4. Childs, A.M., Farhi, E., Gutmann, S.: An example of the difference between quantum and classical random walks. Quantum Inf. Process. 1(1–2), 35–43 (2002)

    Article  MathSciNet  Google Scholar 

  5. Konno, N.: Limit theorem for continuous-time quantum walk on the line. Phys. Rev. E 72(2), 026113 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  6. Mülken, O., Blumen, A.: Spacetime structures of continuous-time quantum walks. Phys. Rev. E 71(3), 036128 (2005)

    Article  ADS  Google Scholar 

  7. Mülken, O., Blumen, A.: Continuous-time quantum walks: Models for coherent transport on complex networks. Phys. Rep. 502(2–3), 37–87 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  8. Galiceanu, M., Strunz, W.T.: Continuous-time quantum walks on multilayer dendrimer networks. Phys. Rev. E 94(2), 022307 (2016)

    Article  ADS  Google Scholar 

  9. Salimi, S.: Continuous-time quantum walks on semi-regular spidernet graphs via quantum probability theory. Quantum Inf. Process. 9(1), 75–91 (2010)

    Article  MathSciNet  Google Scholar 

  10. Mülken, O., Pernice, V., Blumen, A.: Quantum transport on small-world networks: a continuous-time quantum walk approach. Phys. Rev. E 76(5), 051125 (2007)

    Article  ADS  Google Scholar 

  11. Gamble, J.K., Friesen, M., Zhou, D., Joynt, R., Coppersmith, S.N.: Two-particle quantum walks applied to the graph isomorphism problem. Phys. Rev. A 81(5), 90–90 (2010)

    Article  Google Scholar 

  12. Douglas, B.L., Wang, J.B.: A classical approach to the graph isomorphism problem using quantum walks. J. Phys. A Math. Theor. 41(7), 075303 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  13. Childs, A.M., Goldstone, J.: Spatial search by quantum walk. Phys. Rev. A 70(2), 022314 (2004)

    Article  ADS  Google Scholar 

  14. Childs, A.M., Ge, Y.: Spatial search by continuous-time quantum walks on crystal lattices. Phys. Rev. A 89(5), 052337 (2014)

    Article  ADS  Google Scholar 

  15. Meyer, D.A., Wong, T.G.: Connectivity is a poor indicator of fast quantum search. Phys. Rev. Lett. 114(11), 110503 (2015)

    Article  ADS  Google Scholar 

  16. Wong, T.G.: Spatial search by continuous-time quantum walk with multiple marked vertices. Quantum Inf. Process. 15(4), 1411–1443 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  17. Janmark, J., Meyer, D.A., Wong, T.G.: Global symmetry is unnecessary for fast quantum search. Phys. Rev. Lett. 112(21), 210502 (2014)

    Article  ADS  Google Scholar 

  18. Smith, J.: k-Boson quantum walks do not distinguish arbitrary graphs. arXiv:1004.0206 (2010)

  19. Godsil, C., Royle, G.F.: Algebraic Graph Theory. Springer, Berlin (2013)

    MATH  Google Scholar 

  20. Bapat, R.B.: Graphs and Matrices, vol. 27. Springer, Berlin (2010)

    Book  Google Scholar 

  21. Van Mieghem, P.: Graph Spectra for Complex Networks. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  22. Cvetković, D.M., Doob, M., Sachs, H.: Spectra of Graphs: Theory and Application, vol. 87. Academic Press, Cambridge (1980)

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61502101, 61802002), the Natural Science Foundation of Anhui Province, China (Grant No. 1708085MF162), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20171458) and the Six Talent Peaks Project of Jiangsu Province, China (Grant No. 2015-XXRJ-013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanwu Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The number of walks \(L_s\) from one vertex to a non-adjacent vertex in SRG, we obtain it by using Mathematica, is

$$\begin{aligned} L_s=\frac{Q(s)}{k N (c-k)^2 \left( c-k+\lambda _1\right) \left( c-k+\lambda _2\right) }, \end{aligned}$$
(69)

where

$$\begin{aligned} Q(s)= & {} -\,k^5 (k-c)^s+2 c k^4 (k-c)^s \nonumber \\&-\,c^2 k^3 (k-c)^s-c^2 m_1 \lambda _1^3 (k-c)^s \nonumber \\&+\,c k m_1 \lambda _1^3 (k-c)^s-c^2 m_2 \lambda _2^3 (k-c)^s \nonumber \\&+\,c k m_2 \lambda _2^3 (k-c)^s-c m_2 \lambda _1 \lambda _2^3 (k-c)^s \nonumber \\&+\,c k^3 N (k-c)^s-2 c^2 k^2 N (k-c)^s \nonumber \\&+\,c^3 k N (k-c)^s+k^4 \lambda _1 (k-c)^s \nonumber \\&-\,c k^3 \lambda _1 (k-c)^s-c k^2 M \lambda _1 (k-c)^s \nonumber \\&+\,c^2 kN \lambda _1 (k-c)^s+k^4 \lambda _2 (k-c)^s \nonumber \\&-\,c k^3 \lambda _2 (k-c)^s-c m_1 \lambda _1^3 \lambda _2 (k-c)^s \nonumber \\&-\,c k^2 N \lambda _2 (k-c)^s+c^2 k N \lambda _2 (k-c)^s \nonumber \\&-\,k^3 \lambda _1 \lambda _2 (k-c)^s+c k N \lambda _1 \lambda _2 (k-c)^s \nonumber \\&+\,c^4 k^{s+1}+c^4 m_1 \lambda _1^{s+1}-c k^3 m_1 \lambda _1^{s+1} \nonumber \\&+\,3 c^2 k^2 m_1 \lambda _1^{s+1}-3 c^3 k m_1 \lambda _1^{s+1}+c^4 m_2 \lambda _2^{s+1} \nonumber \\&-\,c k^3 m_2 \lambda _2^{s+1}+3 c^2 k^2 m_2 \lambda _2^{s+1} \nonumber \\&-\,3 c^3 k m_2 \lambda _2^{s+1}+c^3 m_2 \lambda _1 \lambda _2^{s+1} \nonumber \\&+\,c k^2 m_2 \lambda _1 \lambda _2^{s+1}-2 c^2 k m_2 \lambda _1 \lambda _2^{s+1} \nonumber \\&-\,4 c^3 k^{s+2}+6 c^2 k^{s+3}-4 c k^{s+4} \nonumber \\&+\,k^{s+5}+c^3 k^{s+1} \lambda _1-3 c^2 k^{s+2} \lambda _1 \nonumber \\&+\,3 c k^{s+3} \lambda _1-k^{s+4} \lambda _1+c^3 k^{s+1} \lambda _2 \nonumber \\&+\,c^3 m_1 \lambda _1^{s+1} \lambda _2+c k^2 m_1 \lambda _1^{s+1} \lambda _2 \nonumber \\&-\,2 c^2 k m_1 \lambda _1^{s+1} \lambda _2-3 c^2 k^{s+2} \lambda _2 \nonumber \\&+\,3 c k^{s+3} \lambda _2-k^{s+4} \lambda _2+c^2 k^{s+1} \lambda _1 \lambda _2 \nonumber \\&-\,2 c k^{s+2} \lambda _1 \lambda _2+k^{s+3} \lambda _1 \lambda _2. \end{aligned}$$
(70)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Chen, H., Ruan, Y. et al. Continuous-time quantum walks on strongly regular graphs with loops and its application to spatial search for multiple marked vertices. Quantum Inf Process 18, 195 (2019). https://doi.org/10.1007/s11128-019-2250-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2250-5

Keywords

Navigation