Skip to main content
Log in

Quantum identity authentication in the orthogonal-state-encoding QKD system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

As is known, quantum key distribution could achieve information-theoretical security under several basic requirements, one of which is reliable identity authentications between the participants. Compared with classical identity authentication, quantum identity authentication (QIA) is considered to be more secure and more efficient to combine with quantum key distribution (QKD), and therefore, more and more scholars are involved in the study of QIA. During the last 3 decades, various types of QKD protocols have been proposed utilizing different kinds of quantum technologies. One of the most special QKD protocols is the orthogonal-state-encoding QKD protocol proposed by Goldenberg and Vaidman (Phys Rev Lett 75:1239–1243, 1995), which is usually called GV95 protocol. Almost all of the QKD protocols employ nonorthogonal states to prevent and detect eavesdropping, and the most famous exception is GV95. In this paper, we present a QIA protocol based on the GV95 technology, which can be performed in a revised circuit of the GV95 protocol. And we also analyze the security of both Alice’s and Bob’s identities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, pp. 175–179. IEEE, New York (1984)

  2. Ekert, A.K.: Quantum cryptography based on Bell theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  4. Goldenberg, L., Vaidman, L.: Quantum cryptography based on orthogonal states. Phys. Rev. Lett. 75, 1239–1243 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  5. Sun, Y., Wen, Q.-Y., Gao, F., Zhu, F.-C.: Robust variations of the Bennett–Brassard 1984 protocol against collective noise. Phys. Rev. A 80, 032321 (2009)

    Article  ADS  Google Scholar 

  6. Song, T.-T., Wen, Q.-Y., Guo, F.-Z., Tan, X.-Q.: Finite-key analysis for measurement-device independent quantum key distribution. Phys. Rev. A 86, 022332 (2012)

    Article  ADS  Google Scholar 

  7. Lin, S., Guo, G.-D., et al.: Quantum key distribution: defeating collective noise without reducing efficiency. Quantum Inf. Comput. 14, 845–856 (2014)

    MathSciNet  Google Scholar 

  8. Li, Y.-B.: Analysis of counterfactual quantum key distribution using error correcting theory. Quantum Inf. Process. 13, 2325–2342 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  9. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648–651 (1999)

    Article  ADS  Google Scholar 

  10. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1824–1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  11. Yang, Y.-G., Wen, Q.-Y., Zhang, X.: Multiparty simultaneous quantum identity authentication with secret sharing. Sci. China Phys. Mech. Astron. 51, 321–327 (2008)

    Article  ADS  Google Scholar 

  12. Qin, S.-J., Gao, F., Wen, Q.-Y., Zhu, F.-C.: Security of quantum secret sharing with two-particle entanglement against individual attacks. Quantum Inf. Comput. 9, 0765–0772 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Lin, S., Wen, Q.-Y., Qin, S.-J., et al.: Multiparty quantum secret sharing with collective eavesdropping-check. Opt. Commun. 282, 4455–4459 (2009)

    Article  ADS  Google Scholar 

  14. Wang, T.-Y., Wen, Q.-Y.: Security of a kind of quantum secret sharing with single photons. Quantum Inf. Comput. 11, 0434–0443 (2011)

    MathSciNet  Google Scholar 

  15. Long, G.-L., Liu, X.: Theoretically efficient high-capacity quantum key distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  16. Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)

    Article  ADS  Google Scholar 

  17. Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  18. Lin, S., Wen, Q.-Y., Zhu, F.-C.: Quantum secure direct communication with x-type entangled states. Phys. Rev. A 78, 064304 (2008)

    Article  ADS  Google Scholar 

  19. Gao, F., Qin, S.-J., Wen, Q.-Y., Zhu, F.-C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt. Commun. 283, 192 (2010)

    Article  ADS  Google Scholar 

  20. Huang, W., Wen, Q.-Y., Jia, H.-Y., Qin, S.-J., Gao, F.: Fault tolerant quantum secure direct communication with quantum encryption against collective noise. Chin. Phys. B 21(10), 100308 (2012)

    Article  ADS  Google Scholar 

  21. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum private queries. Phys. Rev. Lett. 100, 230502 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  22. Jakobi, M., Simon, C., Gisin, N., et al.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83, 022301 (2011)

    Article  ADS  Google Scholar 

  23. Gao, F., Liu, B., Huang, W., Wen, Q.Y.: Postprocessing of the oblivious key in quantum private query. IEEE J. Sel. Top. Quantum 21(3), 6600111 (2015)

    Google Scholar 

  24. Liu, B., Gao, F., Huang, W., et al.: QKD-based quantum private query without a failure probability. Sci. China Phys. Mech. Astron. 58, 100301 (2015)

    Article  Google Scholar 

  25. Wei, C.-Y., Cai, X.-Q., Liu, B., Wang, T.-Y., Gao, F.: A generic construction of quantum-oblivious-transfer-based private query with ideal database security and zero failure. IEEE Trans. Comput. 67(1), 2–8 (2018)

    Article  MathSciNet  Google Scholar 

  26. Wegman, M.N., Carter, J.L.: New hash functions and their use in authentication and set equality. J. Comput. Syst. Sci. 22, 265 (1981)

    Article  MathSciNet  Google Scholar 

  27. Dusek, M., Haderka, O., Hendrych, M., Myska, R.: Quantum identification system. Phys. Rev. A 60, 149–156 (1999)

    Article  ADS  Google Scholar 

  28. Curty, M., Santos, D.J.: Quantum authentication of classical messages. Phys. Rev. A 64, 062309 (2001)

    Article  ADS  Google Scholar 

  29. Zhang, Z.-S., Zeng, G.-H., Zhou, N.-R., Xiong, J.: Quantum identity authentication based on ping–pong technique for photons. Phys. Lett. A 356, 199–205 (2006)

    Article  ADS  Google Scholar 

  30. Shi, B.-S., Li, J., Liu, J.-M., Fan, X.-F., Guo, G.-C.: Quantum key distribution and quantum authentication based on entangled state. Phys. Lett. A 281, 83–87 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  31. Yuan, H., Liu, Y.-M., Pan, G.-Z., Zhang, G., et al.: Quantum identity authentication based on ping–pong technique without entanglements. Quantum Inf. Process. 13, 2535–2549 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  32. Ma, H.-X., Huang, P., Bao, W.-S., et al.: Continuous-variable quantum identity authentication based on quantum teleportation. Quantum Inf. Process. 15, 2605–2620 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  33. Liao, L.-X., Peng, X.-Q., Shi, J.-J., et al.: Graph state-based quantum authentication scheme. Int. J. Mod. Phys. B 31, 1750067 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  34. Hong, C.-H., Heo, J., Jang, J.-G.: Quantum identity authentication with single photon. Quantum Inf. Process. 16, UNSP 236 (2017)

  35. Ljunggren, D., Bourennane, M., Karlsson, A.: Authority-based user authentication in quantum key distribution. Phys. Rev. A 62, 022305 (2000)

    Article  ADS  Google Scholar 

  36. Wang, J., Zhang, Q., Tang, C.-J.: Multiparty simultaneous quantum identity authentication based on entanglement swapping. Chin. Phys. Lett. 23, 2360–2363 (2006)

    Article  ADS  Google Scholar 

  37. Niu, P.-H., Yuan, C., Li, Chong: Quantum authentication scheme based on entanglement swapping. Int. J. Theor. Phys. 55, 302–312 (2016)

    Article  MathSciNet  Google Scholar 

  38. Xu, S.-W., Sun, Y., Lin, S.: Quantum private query based on single-photon interference. Quantum Inf. Process. 15, 3301–3310 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  39. Shimizu, K., Imoto, N.: Single-photon-interference communication equivalent to Bell-state-basis cryptographic quantum communication. Phys. Rev. A 62, 054303 (2000)

    Article  ADS  Google Scholar 

  40. Liu, B., Xiao, D., Huang, W., et al.: Quantum private comparison employing single-photon interference. 16, UNSP 180 (2017)

  41. Barnett, S.M., Croke, S.: Quantum state discrimination. Adv. Opt. Photonics 1, 238–278 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant Nos. 61702061, 61702469, 61771439, 61501414), China Postdoctoral Science Foundation Funded Project (Grant No. 2017M612912), Chongqing Postdoctoral Science Foundation funded project (Grant No. Xm2017041), Fundamental Research Funds for the Central Universities (Grant Nos. 106112016CDJXY180001, 2018CDJSK04XK09), National Cryptography Development Fund (Grant No. MMJJ20170120), Sichuan Youth Science and Technology Foundation (Grant No. 2017JQ0045) and Natural Science Foundation Project of CQ (Grant No. cstc2017rgzn-zdyfX0042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Gao, Z., Xiao, D. et al. Quantum identity authentication in the orthogonal-state-encoding QKD system. Quantum Inf Process 18, 137 (2019). https://doi.org/10.1007/s11128-019-2255-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2255-0

Keywords

Navigation