Skip to main content
Log in

The effects of system–environment correlations on heat transport and quantum entanglement via collision models

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

By means of collision models, we study the effects of system–environment correlations (SECs) on the heat transport and quantum entanglement in both transient and steady-state regimes. In the considered models, the reservoirs are simulated through two chains of particles whose nearest-neighbor collisions induce the SECs. In the first model, the system is a qubit connecting two independent reservoirs with different temperatures. We show that the heat currents exhibit oscillations and even reversed flows from the cold reservoir to the hot one depending on intracollision strengths of reservoir particles. In the stationary regime, we observe a nonlinear relation between heat currents and intracollision strengths, which can be accounted for by the established steady-state SECs. In our second model, the system contains two interacting qubits and we show that the initial entanglement of the system either vanishes within finite steps of collisions or recovers from disappearing and retains nonzero value. The combined regions of relevant parameters that sustain steady-state entanglement are presented. We also present a method to enhance the steady-state entanglement by enlarging temperature differences of the two reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gemma, G., Michel, M., Mahler, G.: Quantum Thermodynamics. Springer, New York (2004)

    Google Scholar 

  2. Uzdin, R., Levy, A., Kosloff, R.: Equivalence of quantum heat machines, and quantum-thermodynamic signatures. Phys. Rev. X 5, 031044 (2015)

    Google Scholar 

  3. Goold, J., Huber, M., Riera, A., del Rio, L., Skrzypczyk, P.: The role of quantum information in thermodynamics-a topical review. J. Phys. A Math. Theor. 49, 143001 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  4. Vinjanampathy, S., Anders, J.: Quantum thermodynamics. Contemp. Phys. 57, 545 (2016)

    Article  ADS  Google Scholar 

  5. Allahverdyan, A.E., Nieuwenhuizen, T.M.: Extraction of work from a single thermal bath in the quantum regime. Phys. Rev. Lett. 85, 1799 (2000)

    Article  ADS  Google Scholar 

  6. Kieu, T.D.: The second law, maxwell’s demon, and work derivable from quantum heat engines. Phys. Rev. Lett. 93, 140403 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  7. Leggio, B., Bellomo, B., Antezza, M.: Quantum thermal machines with single nonequilibrium environments. Phys. Rev. A 91, 012117 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  8. Malabarba, A.S.L., Short, A.J., Kammerlander, P.: Clockdriven quantum thermal engines. New J. Phys. 17, 045027 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  9. Alicki, R., Gelbwaser-Klimovsky, D.: Non-equilibrium quantum heat machines. New J. Phys. 17, 115012 (2015)

    Article  ADS  Google Scholar 

  10. Tonner, F., Mahler, G.: Autonomous quantum thermodynamic machines. Phys. Rev. E 72, 066118 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  11. Henrich, M.J., Mahler, G., Michel, M.: Driven spin systems as quantum thermodynamic machines: fundamental limits. Phys. Rev. E 75, 051118 (2007)

    Article  ADS  Google Scholar 

  12. Azimi, M., Chotorlishvili, L., Mishra, S.K., Vekua, T., Hubner, W., Berakdar, J.: Quantum otto heat engine based on a multiferroic chain working substance. New J. Phys. 16, 063018 (2014)

    Article  ADS  Google Scholar 

  13. Leggio, B., Antezza, M.: Otto engine beyond its standard quantum limit. Phys. Rev. E 93, 022122 (2016)

    Article  ADS  Google Scholar 

  14. Quan, H.T., Liu, Y.X., Sun, C.P., Nori, F.: Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 76, 031105 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  15. Zagoskin, A.M., Savelev, S., Nori, F., Kusmartsev, F.V.: Squeezing as the source of inefficiency in the quantum otto cycle. Phys. Rev. B 86, 014501 (2012)

    Article  ADS  Google Scholar 

  16. Linden, N., Popescu, S., Skrzypczyk, P.: How small can thermal machines be? The smallest possible refrigerator. Phys. Rev. Lett. 105, 130401 (2010)

    Article  ADS  Google Scholar 

  17. Correa, L.A., Palao, J.P., Adesso, G., Alonso, D.: Performance bound for quantum absorption refrigerators. Phys. Rev. E 87, 042131 (2013)

    Article  ADS  Google Scholar 

  18. Brunner, N., Huber, M., Linden, N., Popescu, S., Silva, R., Skrzypczyk, P.: Entanglement enhances cooling in microscopic quantum refrigerators. Phys. Rev. E 89, 032115 (2014)

    Article  ADS  Google Scholar 

  19. Kosloff, R., Geva, E., Gordon, J.M.: Quantum refrigerators in quest of the absolute zero. J. Appl. Phys. 87, 8093 (2000)

    Article  ADS  Google Scholar 

  20. Brask, J.B., Brunner, N.: Small quantum absorption refrigerator in the transient regime: time scales, enhanced cooling, and entanglement. Phys. Rev. E 92, 062101 (2015)

    Article  ADS  Google Scholar 

  21. Silva, R., Skrzypczyk, P., Brunner, N.: Small quantum absorption refrigerator with reversed couplings. Phys. Rev. E 92, 012136 (2015)

    Article  ADS  Google Scholar 

  22. Yu, C.S., Zhu, Q.Y.: Re-examining the self-contained quantum refrigerator in the strong-coupling regime. Phys. Rev. E 90, 052142 (2014)

    Article  ADS  Google Scholar 

  23. Man, Z.X., Xia, Y.J.: Smallest quantum thermal machine: the effect of strong coupling and distributed thermal tasks. Phys. Rev. E 96, 012122 (2017)

    Article  ADS  Google Scholar 

  24. He, Z.C., Huang, X.Y., Yu, C.S.: Enabling the self-contained refrigerator to work beyond its limits by filtering the reservoirs. Phys. Rev. E 96, 052126 (2017)

    Article  ADS  Google Scholar 

  25. Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  26. Nicacio, F., Ferraro, A., Imparato, A., Paternostro, M., Semiao, F.L.: Thermal transport in out-of-equilibrium quantum harmonic chains. Phys. Rev. E 91, 042116 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  27. Oviedo-Casado, S., Prior, J., Chin, A.W., Rosenbach, R., Huelga, S.F., Plenio, M.B.: Phase-dependent exciton transport and energy harvesting from thermal environments. Phys. Rev. A 93, 02010 (2016)

    Article  Google Scholar 

  28. Werlang, T., Marchiori, M.A., Cornelio, M.F., Valente, D.: Optimal rectification in the ultrastrong coupling regime. Phys. Rev. E 89, 062109 (2014)

    Article  ADS  Google Scholar 

  29. Ordonez-Miranda, J., Ezzahri, Y., Joulain, K.: Quantum thermal diode based on two interacting spinlike systems under different excitations. Phys. Rev. E 95, 022128 (2017)

    Article  ADS  Google Scholar 

  30. Werlang, T., Valente, D.: Heat transport between two pure-dephasing reservoirs. Phys. Rev. E 91, 012143 (2015)

    Article  ADS  Google Scholar 

  31. Man, Z.X., An, N.B., Xia, Y.J.: Controlling heat flows among three reservoirs asymmetrically coupled to two two-level systems. Phys. Rev. E 94, 042135 (2016)

    Article  ADS  Google Scholar 

  32. Rau, J.: Relaxation phenomena in spin and harmonic oscillator systems. Phys. Rev. 129, 1880 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  33. Scarani, V., Ziman, M., Stelmachovic, P., Gisin, N., Buzek, V.: Thermalizing quantum machines: dissipation and entanglement. Phys. Rev. Lett. 88, 097905 (2002)

    Article  ADS  Google Scholar 

  34. Ziman, M., Stelmachovic, P., Buzek, V., Hillery, M., Scarani, V., Gisin, N.: Diluting quantum information: an analysis of information transfer in system–reservoir interactions. Phys. Rev. A 65, 042105 (2002)

    Article  ADS  Google Scholar 

  35. Ciccarello, F., Palma, G.M., Giovannetti, V.: Collisionmodel-based approach to non-markovian quantum dynamics. Phys. Rev. A 87, 040103 (2013)

    Article  ADS  Google Scholar 

  36. Kretschmer, S., Luoma, K., Strunz, W.T.: Collision model for non-markovian quantum dynamics. Phys. Rev. A 94, 012106 (2016)

    Article  ADS  Google Scholar 

  37. Cakmak, B., Pezzutto, M., Paternostro, M., Mustecaplioglu, O.E.: Non-Markovianity, coherence, and system–environment correlations in a long-range collision model. Phys. Rev. A 96, 022109 (2017)

    Article  ADS  Google Scholar 

  38. Lorenzo, S., Ciccarello, F., Palma, G.M.: Composite quantum collision models. Phys. Rev. A 96, 032107 (2017)

    Article  ADS  Google Scholar 

  39. Filippov, S.N., Piilo, J., Maniscalco, S., Ziman, M.: Divisibility of quantum dynamical maps and collision models. Phys. Rev. A 96, 032111 (2017)

    Article  ADS  Google Scholar 

  40. McCloskey, R., Paternostro, M.: Non-Markovianity and system-environment correlations in a microscopic collision model. Phys. Rev. A 89, 052120 (2014)

    Article  ADS  Google Scholar 

  41. Bernardes, N.K., Carvalho, A.R.R., Monken, C.H., Santos, M.F.: Environmental correlations and Markovian to non-Markovian transitions in collisional model. Phys. Rev. A 90, 032111 (2014)

    Article  ADS  Google Scholar 

  42. Jin, J., Yu, C.S.: Non-markovianity in the collision model with environmental block. New J. Phys. 20, 053026 (2018)

    Article  ADS  Google Scholar 

  43. Jin, J., Giovannetti, V., Fazio, R., Sciarrino, F., Mataloni, P., Crespi, A., Osellame, R.: All-optical non-Markovian stroboscopic quantum simulator. Phys. Rev. A 91, 012122 (2015)

    Article  ADS  Google Scholar 

  44. Cuevas, Á., Geraldi, A., Liorni, C., Diego Bonavena, L., De Pasquale, A., Sciarrino, F., Giovannetti, V., Mataloni, P.: All optical implementation of collision-based evolutions of open quantum systems (2018). arXiv:1809.01922 [quant-ph]

  45. Man, Z.X., Xia, Y.J., Franco, R.L.: Temperature effects on quantum non-Markovianity via collision models. Phys. Rev. A 97, 062104 (2015)

    Article  ADS  Google Scholar 

  46. Lorenzo, S., McCloskey, R., Ciccarello, F., Paternostro, M., Palma, G.M.: Landauer’s principle in multipartite open quantum system dynamics. Phys. Rev. Lett. 115, 120403 (2015)

    Article  ADS  Google Scholar 

  47. Lorenzo, S., Farace, A., Ciccarello, F., Palma, G.M., Giovannetti, V.: Heat flux and quantum correlations in dissipative cascaded systems. Phys. Rev. A 91, 022121 (2015)

    Article  ADS  Google Scholar 

  48. Pezzutto, M., Paternostro, M., Omar, Y.: Implications of non-markovian quantum dynamics for the landauer bound. New J. Phys. 18, 123018 (2016)

    Article  ADS  Google Scholar 

  49. Li, L., Zou, J., Li, H., Xu, B.M., Wang, Y.M., Shao, B.: Effect of coherence of nonthermal reservoirs on heat transport in a microscopic collision model. Phys. Rev. E 97, 022111 (2018)

    Article  ADS  Google Scholar 

  50. Chiara, G.D., Landi, G., Hewgill, A., Reid, B., Ferraro, A., Roncaglia, A.J., Antezza, M.: Reconciliation of quantum local master equations with thermodynamics. New J. Phys. 20, 113024 (2018)

    Article  Google Scholar 

  51. Watanabe, S.: Information theoretical Analysis of Multivariate Correlation. IBM J. Res. Dev. 4, 66 (1960)

    Article  MathSciNet  Google Scholar 

  52. Kumar, A.: Multiparty quantum mutual information: an alternative definition. Phys. Rev. A 96, 012332 (2017)

    Article  ADS  Google Scholar 

  53. Hu, M.L., Fan, H.: Quantum coherence of multiqubit states in correlated noisy channels (2018). arXiv:1812.04385v1 [quant-ph]

  54. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  55. Arnesen, M.C., Bose, S., Vedral, V.: Natural thermal and magnetic entanglement in the 1D heisenberg model. Phys. Rev. Lett. 87, 017901 (2001)

    Article  ADS  Google Scholar 

  56. Wang, X.G.: Entanglement in the quantum heisenberg XY model. Phys. Rev. A 64, 012313 (2001)

    Article  ADS  Google Scholar 

  57. Gunlycke, D., Kendon, V.M., Vedral, V., Bose, S.: Thermal concurrence mixing in a one-dimensional ising model. Phys. Rev. A 64, 042302 (2001)

    Article  ADS  Google Scholar 

  58. Eisler, V., Zimboras, Z.: Entanglement in the XX spin chain with an energy current. Phys. Rev. A 71, 042318 (2005)

    Article  ADS  Google Scholar 

  59. Quiroga, L., Rodrguez, F.J., Ramrez, M.E., Pars, R.: Nonequilibrium thermal entanglement. Phys. Rev. A 75, 032308 (2007)

    Article  ADS  Google Scholar 

  60. Sinaysky, I., Petruccione, F., Burgarth, D.: Dynamics of nonequilibrium thermal entanglement. Phys. Rev. A 78, 062301 (2008)

    Article  ADS  Google Scholar 

  61. Huang, X.L., Guo, J.L., Yi, X.X.: Nonequilibrium thermal entanglement in a three-qubit XX model. Phys. Rev. A 80, 054301 (2009)

    Article  ADS  Google Scholar 

  62. Brask, J.B., Haack, G., Brunner, N., Huber, M.: Autonomous quantum thermal machine for generating steady-state entanglement. New J. Phys. 17, 113029 (2015)

    Article  ADS  Google Scholar 

  63. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation (China) under Grant Nos. 11574178 and 61675115, Shandong Provincial Natural Science Foundation (China) under Grant No. ZR2016JL005, and Taishan Scholar Project of Shandong Province (China) under Grant No. tsqn201812059.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Xiao Man.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix, we present some explanations for the derivation of the steady-state as well as Eqs. (14)–(16) in the first model. We first assume a general form of the steady-state \(\widetilde{\rho }_{R^{(h)}_{m}SR^{(c)}_{m}}\) with matrix elements \(\widetilde{\rho }_{kl}\equiv \left\langle \overline{k} \left| \widetilde{\rho }_{R^{(h)}_{m}SR^{(c)}_{m}}\right| \overline{l}\right\rangle \) (\(k,l=1,2,\ldots ,8\)) expressed in the ordered basis \(\{\left| \overline{1}\right\rangle =\left| 000\right\rangle , \left| \overline{2}\right\rangle =\left| 001\right\rangle , \left| \overline{3}\right\rangle =\left| 010\right\rangle ,\) \(\left| \overline{4}\right\rangle =\left| 011\right\rangle , \left| \overline{5}\right\rangle =\left| 100\right\rangle , \left| \overline{6}\right\rangle =\left| 101\right\rangle , \left| \overline{7}\right\rangle =\left| 110\right\rangle , \left| \overline{8}\right\rangle =\left| 111\right\rangle \}\) of \(R_{m}^{(h)}\), S, and \(R_{m}^{(c)}\). To derive the concrete form of the steady state, we should construct and solve 64 equations for these elements. Since the total systems of \(R_{m}^{(h)}\), S, and \(R_{m}^{(c)}\) have reached the stationary regime, their state \(\widetilde{\rho }_{R^{(h)}_{m}SR^{(c)}_{m}}\) should remain invariant under the successive collisions of \(S-R_{m}^{(h)}\), \(S-R_{m}^{(c)}\), \(R_{m}^{(h)}-R_{m+1}^{(h)}\), and \(R_{m}^{(c)}-R_{m+1}^{(c)}\) as given in Eqs. (11) and (12). Suppose the overall action of these collisions is \(F(J_{h},J_{c},\varOmega )\), then we have \(\widetilde{\rho }_{R^{(h)}_{m}SR^{(c)}_{m}}=F(J_{h},J_{c},\varOmega )\widetilde{\rho }_{R^{(h)}_{m}SR^{(c)}_{m}}F^{\dag }(J_{h},J_{c},\varOmega )\), from which we can derive the 64 equations for the elements \(\widetilde{\rho }_{kl}\) and obtain their values via numerical calculations.

From the definition of heat current (13), we know that to calculate the released heat \(\Delta \widetilde{Q}_{m}^{(h)}\) of the hot reservoir we should first derive the state \(\widetilde{\rho ^{\prime }}_{R_{m}^{(h)}}\), i.e., the state of \(R_{m}^{(h)}\) after collision with the system, as well as \(\widetilde{\rho }_{R_{m}^{(h)}}\). Since we have assumed the general form of the steady-state \(\widetilde{\rho }_{R^{(h)}_{m}SR^{(c)}_{m}}\), \(\widetilde{\rho }_{R_{m}^{(h)}}\) can be obtained straightforward by tracing \(\widetilde{\rho }_{R^{(h)}_{m}SR^{(c)}_{m}}\) over the degrees of freedom of S and \(R^{(c)}_{m}\) and expressed in terms of the matrix elements \(\widetilde{\rho }_{kl}\). Suppose the collision between S and \(R^{(h)}_{m}\) is given by the action \(f(J_{h})\), then we shall obtain \(\widetilde{\rho }^{\prime }_{R_{m}^{(h)}}\) through tracing the transformed state \(f(J_{h})\widetilde{\rho }_{R^{(h)}_{m}SR^{(c)}_{m}}f^{\dag }(J_{h})\) over the degrees of freedom of S and \(R^{(c)}_{m}\). The form of \(\widetilde{\rho }^{\prime }_{R_{m}^{(h)}}\) can thus be expressed by the matrix elements \(\widetilde{\rho }_{kl}\) and \(J_{h}\). In the total expression of \(\Delta \widetilde{Q}_{m}^{(h)}\), we can easily find the terms contributed by the diagonal and off-diagonal elements of \(\widetilde{\rho }_{kl}\). Therefore, we divide \(\Delta \widetilde{Q}_{m}^{(h)}\) correspondingly into two parts as given in Eqs. (15) and (16).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Man, ZX., Zhang, Q. & Xia, YJ. The effects of system–environment correlations on heat transport and quantum entanglement via collision models. Quantum Inf Process 18, 157 (2019). https://doi.org/10.1007/s11128-019-2275-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2275-9

Keywords

Navigation