Skip to main content
Log in

Performance improvement of free-space continuous-variable quantum key distribution with an adaptive optics unit

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a method to enhance the performance of the free-space continuous-variable quantum key distribution (FSCVQKD) by utilizing an adaptive optics (AO) unit at the receiver’s side to suppress wavefront distortions caused by high-order wavefront aberrations for fault-tolerant detection. Benefiting from the AO unit, the high-order wavefront aberrations can be corrected and thus effectively improve the mixing efficiency of homodyne detection, which enhances the performance of FSCVQKD. Considering the fact that the closed-loop control bandwidth of AO unit and the atmospheric coherence length have an important effect in performance improvement for FSCVQKD, in this paper, we analyze the performance of our protocol with AO unit under different closed-loop control bandwidths and atmospheric coherence lengths, respectively. The analysis is performed by considering the three specific scenarios of turbulence which are frequent challenges in FSCVQKD protocol, namely beam wandering, randomly blocked and log-normal distribution. In addition, we also study the impact of AO-added noise on our protocol. Simulation results show that all in the beam wandering case, the randomly blocked case and the log-normal distribution, the use of AO unit can enhance the performance of FSCVQKD protocol by adjusting the closed-loop control bandwidth of AO unit and the atmospheric coherence length in appropriate ranges with the case of fixed Greenwood frequency in the presence of AO-added noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dusek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301 (2009)

    Article  ADS  Google Scholar 

  2. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of International Conference on Computers, Systems and Signal Processing, Bangalore, India, 1984. pp. 175–179 (1984)

  3. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050–2056 (1999)

    Article  ADS  Google Scholar 

  4. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67(6), 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  5. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  6. Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88, 057902 (2002)

    Article  ADS  Google Scholar 

  7. Grosshans, F., Van Assche, G., Wenger, J., Brouri, R., Cerf, J.N., Grangier, P.: Quantum key distribution using gaussian-modulated coherent states. Nature 421(6920), 238 (2003)

    Article  ADS  Google Scholar 

  8. Huang, D., Lin, D.K., Huang, P., Zeng, G.H.: High-speed continuous-variable quantum key distribution without sending a local oscillator. Opt. Lett. 40, 3695 (2015)

    Article  ADS  Google Scholar 

  9. Ralph, T.C.: Continuous variable quantum cryptography. Phys. Rev. A 61(1), 010303 (1999)

    Article  MathSciNet  Google Scholar 

  10. Hillery, M.: Quantum cryptography with squeezed states. Phys. Rev. A 61(2), 022309 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  11. Jouguet, P., Kunzjacques, S., Leverrier, A., Grangier, P., Diamanti, E.: Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photonics 7(5), 378–381 (2013)

    Article  ADS  Google Scholar 

  12. Huang, D., Huang, P., Lin, D.K., Zeng, G.H.: Long-distance continuous-variable quantum key distribution by controlling excess noise. Sci. Rep. 6, 19201 (2016)

    Article  ADS  Google Scholar 

  13. Huang, D., Lin, D.K., Huang, P., Wang, C., Liu, W.Q., Fang, S.H., Zeng, G.H.: Continuous-variable quantum key distribution with 1 Mbps secure key rate. Opt. Express 23, 17511 (2015)

    Article  ADS  Google Scholar 

  14. Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84, 621 (2012)

    Article  ADS  Google Scholar 

  15. Lodewyck, J., Bloch, M., Garca-Patrn, R., Fossier, S., Karpov, E., Diamanti, E.: Quantum key distribution over 25 km with an all-fiber continuous-variable system. Phys. Rev. A 76(4), 538–538 (2007)

    Article  Google Scholar 

  16. Qi, B., Huang, L.L., Qian, L., Lo, H.K.: Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers. Phys. Rev. A 76, 052323 (2007)

    Article  ADS  Google Scholar 

  17. Huang, D., Huang, P., Li, H.S., Wang, T., Zhou, Y.M., Zeng, G.H.: Field demonstration of a continuous-variable quantum key distribution network. Opt. Lett. 41, 3511 (2016)

    Article  ADS  Google Scholar 

  18. Semenov, A.A., Vogel, W.: Quantum light in the turbulent atmosphere. Phys. Rev. A 80, 021802 (2009)

    Article  ADS  Google Scholar 

  19. Vasylyev, D.Y., Semenov, A.A., Vogel, W.: Toward global quantum communication: beam wandering preserves nonclassicality. Phys. Rev. Lett. 108, 220501 (2012)

    Article  ADS  Google Scholar 

  20. Dong, R., Lassen, M., Heersink, J., Marquardt, C., Filip, R., Leuchs, G., Andersen, U.L.: Continuous variable entanglement distillation of Non-Gaussian mixed states. Phys. Rev. A 82, 012312 (2012)

    Article  ADS  Google Scholar 

  21. Guo, Y., Xie, C., Liao, Q., Zhao, W., Zeng, G.H., Huang, D.: Entanglement-distillation attack on continuous-variable quantum key distribution in a turbulent atmospheric channel. Phys. Rev. A 96(2), 022320 (2017)

    Article  ADS  Google Scholar 

  22. Usenko, V.C., Heim, B., Peuntinger, C., Wittmann, C., Marquardt, C., Leuchs, G.: Entanglement of Gaussian states and the applicability to quantum key distribution over fading channels. New J. Phys. 14(9), 93048 (2012)

    Article  Google Scholar 

  23. Vasylyev, D.Y., Semenov, A.A., Vogel, W.: Atmospheric quantum channels with weak and strong turbulence. Phys. Rev. Lett. 117(9), 090501 (2016)

    Article  ADS  Google Scholar 

  24. Fante, R.L.: Electromagnetic beam propagation in turbulent media. Proc. IEEE 63(12), 1669 (1975)

    Article  ADS  Google Scholar 

  25. Fante, R.L.: Electromagnetic beam propagation in turbulent media: an update. Proc. IEEE 68, 1424 (1980)

    Article  ADS  Google Scholar 

  26. Milonni, P., Carter, J., Peterson, C., Hughes, R.: Effects of propagation through atmospheric turbulence on photon statistics. J. Opt. B 6, S742 (2004)

    Article  ADS  Google Scholar 

  27. Ma, X., Sun, J., Zhi, Y., Zhou, Y., Lu, W., Hou, P., Xu, Q., Liu, L.: Performance analysis of pupil-matching optical differential receivers in space-to-ground laser communication. Appl. Opt. 53(14), 3010C3018 (2014)

    Google Scholar 

  28. Wang, S., Rao, C., Xian, H., Zhang, J., Wang, J., Liu, Z.: Laboratory demonstrations on a pyramid wavefront sensor without modulation for closed-loop adaptive optics system. Opt. Express 19(9), 8135–50 (2011)

    Article  ADS  Google Scholar 

  29. Perez, J., Zvanovec, S., Ghassemlooy, Z., Popoola, W.O.: Experimental characterization and mitigation of turbulence induced signal fades within an ad hoc FSO network. Opt. Express 22(3), 3208C3218 (2014)

    Article  Google Scholar 

  30. Yao, K., Wang, J., Liu, X., Li, H., Wang, M., Cui, B., Yu, S.: Pyramid wavefront sensor using a sequential operation method. Appl. Opt. 54(13), 3894C3901 (2015)

    Article  Google Scholar 

  31. Liu, W., Shi, W., Yao, K., Cao, J., Wu, P., Chi, X.: Bit error rate analysis with real-time pointing errors correction in free space optical communication systems. Opt. Laser Technol. 60, 116C123 (2014)

    Google Scholar 

  32. Zhang, W.J., Li, H., You, L.X., Huang, J., He, Y.H., Zhang, L.: Superconducting nanowire single-photon detector with a system detection efficiency over 80 at 940-nm wavelength. IEEE Photonics J. 8(4), 2701113 (2016)

    Google Scholar 

  33. Liu, W., Shi, W., Wang, B., Yao, K., Lv, Y., Wang, J.: Free space optical communication performance analysis with focal plane based wavefront measurement. Opt. Commun. 309, 212C220 (2013)

    Google Scholar 

  34. Rahmat-Samii, Y., Densmore, A.C.: Technology trends and challenges of antennas for satellite communication systems. IEEE Trans. Antenn. Propag 03, 1C14 (2014)

    MATH  Google Scholar 

  35. Yao, K., Wang, J., Liu, X., Liu, W.: Closed-loop adaptive optics system with a single liquid crystal spatial light modulator. Opt. Express 22(14), 17216C17226 (2014)

    Article  ADS  Google Scholar 

  36. Cao, J., Zhao, X., Li, Z., Liu, W., Song, Y.: Stochastic parallel gradient descent laser beam control algorithm for atmospheric compensation in free space optical communication. Optik (Stuttg.) 125(20), 6142–6147 (2014)

    Article  ADS  Google Scholar 

  37. Huang, J., Mei, H., Deng, K., Kang, L., Zhu, W., Yao, Z.: Signal to noise ratio of free space homodyne coherent optical communication after adaptive optics compensation. Opt. Commun. 356, 574C577 (2015)

    Google Scholar 

  38. Berkefeld, T., Soltau, D., Czichy, R., Fischer, E., Wandernoth, B., Sodnik, Z.: Adaptive optics for satellite-to-ground laser communication at the 1m telescope of the ESA optical ground station, Tenerife, Spain. Proc. SPIE 7736, 77364C (2010)

    Article  ADS  Google Scholar 

  39. Tyson, R.K.: Adaptive optics and ground-to-space laser communications. Appl. Opt. 35(19), 3640C3646 (1996)

    Article  Google Scholar 

  40. Ling, N., Zhang, Y., Rao, X., Wang, C., Hu, Y., Jiang, W., Jiang, C.: Experiments of high resolution retinal imaging with adaptive optics. Proc. SPIE 5639, 37C45 (2004)

    Google Scholar 

  41. Liu, C., Hu, L., Mu, Q., Cao, Z., Xuan, L.: Open-loop control of liquid-crystal spatial light modulators for vertical atmospheric turbulence wavefront correction. Appl. Opt. 50(1), 82C89 (2011)

    Article  Google Scholar 

  42. Belmonte, A., Rodrguez, A., Dios, F., Comern, A.: Phase compensation considerations on coherent free-space laser communications system. Proc. SPIE 6736, A11 (2007)

    Google Scholar 

  43. Belmonte, A.: Influence of atmospheric phase compensation on optical heterodyne power measurements. Opt. Express 16(9), 6756C6767 (2008)

    Article  Google Scholar 

  44. Li, M., Cvijetic, M.: Coherent free space optics communications over the maritime atmosphere with use of adaptive optics for beam wavefront correction. Appl. Opt. 54(6), 1453C1462 (2015)

    Google Scholar 

  45. Li, J., Zhang, Z., Gao, J., Sun, J., Chen, W.: Bandwidth ofadaptiveopticssysteminatmosphericcoherentlaser communication. Opt. Commun. 339, 254C260 (2016)

    Google Scholar 

  46. Zuo, L., Ren, Y., Dang, A., Guo, H.: Performance of coherent BPSK systems using phase compensation and diversity techniques. In: Proceedings of IEEE Conference on Global Telecommunication (IEEE), pp. 1–5 (2010)

  47. Zuo, L., Dang, A., Ren, Y., Guo, H.: Performance of phase compensated coherent free space optical communications through non-Kolmogorov turbulence. Opt. Commun. 28, 41491C41495 (2011)

    Google Scholar 

  48. Liu, C., Chen, S., Li, X., Xian, H.: Performance evaluation of adaptive optics for atmospheric coherent laser communications. Opt. Express 22(13), 15554C15563 (2014)

    ADS  Google Scholar 

  49. Liu, C., Chen, M., Chen, S., Xian, H.: Adaptive optics for the free-space coherent optical communications. Opt. Commun. 361, 21C24 (2016)

    Google Scholar 

  50. Huang, J., Deng, K., Liu, C., Zhang, P., Jiang, D., Yao, Z.: Effectiveness of adaptive optics system in satellite-to-ground coherent optical communication. Opt. Express 22(13), 16000C16007 (2014)

    Article  Google Scholar 

  51. Liu, W., Yao, K., Huang, D., Lin, X., Wang, L., Lv, Y.: Performance evaluation of coherent free space optical communications with a double-stage fast-steering-mirror adaptive optics system depending on the Greenwood frequency. Opt. Express 24(12), 13288C13302 (2016)

    Google Scholar 

  52. Cao, J., Zhao, X., Liu, W., Gu, H.: Performance analysis of a coherent free space optical communication system based on experiment. Opt. Express 25(13), 15299 (2017)

    Article  ADS  Google Scholar 

  53. Garcia-Patron, R., Cerf, N.J.: Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution. Phys. Rev. Lett. 97, 190503 (2006)

    Article  ADS  Google Scholar 

  54. Fossier, S., Diamanti, E., Debuisschert, T., Villing, A., TualleCBrouri, R., Grangier, P.: Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers. J. Phys. B At. Mol. Opt. 42, 114014 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61801522, 61871407).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaodong Wu or Duan Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Compute of Holevo bound

Here, we compute the Holevo bound \(\chi _\mathrm{E}\) based on the reverse reconciliation \((\chi _\mathrm{E}=\chi _\mathrm{BE})\). Considering the fact that state mentioned previously can be purified by Eve, hence we can calculate the Holevo bound \(\chi _\mathrm{BE}\) as

$$\begin{aligned} \chi _\mathrm{BE}=S(\rho _\mathrm{AB_{1}})-S(\rho ^{m_\mathrm{B}}_\mathrm{AFG}). \end{aligned}$$
(16)

According to Ref. [54], the expression of \(\chi _\mathrm{BE}\) can be further simplified as

$$\begin{aligned} \chi _\mathrm{BE}=\sum ^{2}_{i=1}G\left( \frac{\nu _{i}-1}{2}\right) -\sum ^{5}_{i=3}G\left( \frac{\nu _{i}-1}{2}\right) , \end{aligned}$$
(17)

where \(G(x)=(x+1)\mathrm{log}(x+1)-x\mathrm{log}x\) and the symplectic eigenvalues \(\nu _{1,2}\) are given by

$$\begin{aligned} \nu ^{2}_{1,2}=\frac{1}{2}\left[ A\pm \sqrt{A^{2}-4B}\right] , \end{aligned}$$
(18)

with the denotations

$$\begin{aligned} A= & {} V^{2}(1-2T_\mathrm{nf})+2T_\mathrm{nf}+T^{2}_\mathrm{nf}(V+\chi _\mathrm{line})^{2}, \nonumber \\ B= & {} T^{2}_\mathrm{nf}(V\chi _\mathrm{line}+1)^{2}. \end{aligned}$$
(19)

Furthermore, the second part of Eq. (17) can be calculated by utilizing the symplectic eigenvalues of the covariance matrix \(\rho ^{m_\mathrm{B}}_\mathrm{AFG}\), which can be expressed by

$$\begin{aligned} \rho ^{m_\mathrm{B}}_\mathrm{AFG}=\rho _\mathrm{AFG}-\sigma ^{T}_\mathrm{AFGB_{3}}(X\rho _\mathrm{B_{3}}X)^{MP}\sigma _\mathrm{AFGB_{3}}, \end{aligned}$$
(20)

where \(X=\mathrm{diag}(1,0)\) and MP represents the inverse on the range. The decomposed covariance matrix \(\rho _\mathrm{AFGB_{3}}\) is expressed by

$$\begin{aligned} \rho _\mathrm{AFGB_{3}}=\left( \begin{array}{cc} \rho _\mathrm{AFG} &{} \sigma ^{T}_\mathrm{AFGB_{3}} \\ \sigma _\mathrm{AFGB_{3}}&{} \rho _\mathrm{B_{3}}\\ \end{array} \right) . \end{aligned}$$
(21)

It is obvious that the sub-matrices \(\rho _\mathrm{AFG}\), \(\rho _\mathrm{B_{3}}\) and \(\sigma _\mathrm{AFGB_{3}}\) can be derived from this matrix. Note that the matrix \(\rho _\mathrm{AFGB_{3}}\) can be achieved by utilizing appropriate rearrangement of lines and columns from the matrix \(\rho _{\mathrm{AB}_{3}FG}\), which can be written as

$$\begin{aligned} \rho _\mathrm{AB_{3}FG}=(\varXi ^\mathrm{BS})^{T}[\rho _\mathrm{AB_{2}}\bigoplus \rho _\mathrm{F_{0}G}]\varXi ^\mathrm{BS}, \end{aligned}$$
(22)

where \(\rho _\mathrm{F_{0}G}\) is the matrix which describes the EPR state of variance \(\upsilon \) used to model the electronic noise of the detector. It can be given by

$$\begin{aligned} \rho _\mathrm{F_{0}G}=\left( \begin{array}{cc} \upsilon I &{} \sqrt{\upsilon ^{2}-1}\sigma _{z} \\ \sqrt{\upsilon ^{2}-1}\sigma _{z}&{} \upsilon I \\ \end{array} \right) . \end{aligned}$$
(23)

For the homodyne detection in our system, the \(\upsilon \) can be allowed to take the appropriate value. Ultimately, the matrix \(\varXi ^\mathrm{BS}\) stands for the operation of the beam splitter, which models the inefficiency of Bob’s detector. It can be expressed by

$$\begin{aligned} \varXi ^\mathrm{BS}=I\bigoplus \varXi ^\mathrm{BS}_\mathrm{B_{2}F}\bigoplus I, \end{aligned}$$
(24)

with

$$\begin{aligned} \varXi ^\mathrm{BS}_\mathrm{B_{2}F}=\left( \begin{array}{cc} \sqrt{\gamma _\mathrm{h}}I &{} \sqrt{1-\gamma _\mathrm{h}}I \\ -\sqrt{1-\gamma _\mathrm{h}}I&{} \sqrt{\gamma _\mathrm{h}}I\\ \end{array} \right) . \end{aligned}$$
(25)

We now can calculate the symplectic eigenvalues \(\nu _{3,4,5}\) of the covariance matrix \(\rho ^{m_\mathrm{B}}_\mathrm{AFG}\) based on the above elements. Namely, for the homodyne case, the eigenvalues \(\nu _{3,4}\) are given by

$$\begin{aligned} \nu ^{2}_{3,4}=\frac{1}{2}[C\pm \sqrt{C^{2}-4D}], \end{aligned}$$
(26)

with the denotations

$$\begin{aligned} C= & {} \frac{A(\chi _\mathrm{w}+\chi _\mathrm{h})+V\sqrt{B}+T_\mathrm{nf}(V+\chi _\mathrm{line})}{T_\mathrm{nf}(V+\chi _\mathrm{tot})},\nonumber \\ D= & {} \frac{\sqrt{B}V+B(\chi _\mathrm{w}+\chi _\mathrm{h})}{T_\mathrm{nf}(V+\chi _\mathrm{tot})}, \end{aligned}$$
(27)

where A, B have been given in Eq. (19). The last symplectic eigenvalue is \(\nu _{5}=1\). Based on above equations, the Holevo quantity \(\chi _\mathrm{BE}\) can be calculated.

Appendix B: Analysis of beam wandering

In realistic free-space channels, the main causes of fluctuations are complex. Fortunately, we can use a distribution of values T to character such fluctuating-loss channels with a probability density distribution P(T). According to other recent works [19], we will focus on the important phenomenon of beam wandering, which is caused by turbulence and unstable adjustment of the radiation source. Considering that the fluctuating-loss channels are mainly characterized by the probability distribution of the transmission coefficient (PDTC), thus for the convenience of analysis, the approximate analytical expression of the transmission efficiency is used here to evaluate the PDTC, which is given by

$$\begin{aligned} T^{2}=T^{2}_{0}\exp \left[ -\left( \frac{r}{Q}\right) \right] ^{\varOmega }, \end{aligned}$$
(28)

where r stands for the beam-deflection distance and \(\varOmega \) and Q stand for the shape and scale parameter, respectively. The parameter \(T_{0}\) represents the maximal transmission coefficient for the given beam-spot radius W, which can be expressed by

$$\begin{aligned} T^{2}_{0}=1-\exp [-2\varPhi ], \end{aligned}$$
(29)

where \(\varPhi =\frac{R^{2}}{W^{2}}\). As shown in Fig. 10a, the transmittance decreases with increasing beam-deflection distance r under different beam-spot radius. Based on the work in Ref. [19], the beam-deflection distance r follows the Rice distribution with parameters d and \(\tau ^{2}\). Under the assumption that the beam spatially fluctuates around the aperture center \((d=0)\), P(T) can be described by the log-negative Weibull distribution, which is given by

$$\begin{aligned} P(T)=\frac{2Q^{2}}{\tau ^{2}\varOmega T}\left( 2\ln \frac{T_{0}}{T}\right) ^{\frac{2}{\varOmega }-1}\exp \left[ - \frac{Q^{2}}{2\tau ^{2}}\left( 2\ln \frac{T_{0}}{T}\right) ^{\frac{2}{\varOmega }}\right] , \end{aligned}$$
(30)

for \(T\in [0,T_{0}]\), with \(P(T)=0\) otherwise. The parameters \(\varOmega \) and Q can be expressed as

$$\begin{aligned} \varOmega= & {} 8\varPhi \frac{\exp (-4\varPhi )I_{1}[4\varPhi ]}{1-\exp (-4\varPhi )I_{0}[4 \varPhi ]}\left[ \ln \left( \frac{2T^{2}_{0}}{1-\exp (-4\varPhi )I_{0}[4\varPhi ]}\right. \right] ^{-1}, \end{aligned}$$
(31)
$$\begin{aligned} Q= & {} R\left[ \ln \left( \frac{2T^{2}_{0}}{1-\exp (-4\varPhi )I_{0}[4\varPhi ]}\right) \right] ^{-\frac{1}{\varOmega }}, \end{aligned}$$
(32)

where \(I_{0}[.]\) and \(I_{1}[.]\) are the modified Bessel functions. Then we can obtain \(\langle T\rangle =\int ^{T_{0}}_{0}TP(T)\text {d}T\) and \(\langle \sqrt{T}\rangle =\int ^{T_{0}}_{0}\sqrt{T}P(T)\text {d}T\). When the distance \(d=0\), the relationship between the factors (the parameters \(T_\mathrm{nf}\) and \(\xi _\mathrm{nf}\)) of the fluctuating channel and the variance \(\tau ^{2}\) is given in Fig. 10b. It is clear that the parameter \(T_\mathrm{nf}\) decreases with \(\tau ^{2}\) and finally tends to a constant, while \(\xi _\mathrm{nf}\) increases and ultimately reaches a maximum.

Fig. 10
figure 10

(Color online) Simulations based on the fluctuations in the transmissivity caused by beam wandering. a The relationship between transmittance squared and the beam-deflection distance r with different values of the beam-spot radius W. Here, for simplicity the aperture radius R is assumed \(R=1\). b Parameters \(T_\mathrm{nf}\) and \(\xi _\mathrm{nf}\) as functions of beam-deflection variance \(\tau ^{2}\)

Appendix C: Analysis of randomly blocked quantum channel

The randomly blocked quantum channel means that the transmittance of the fluctuating channel is blocked randomly, as shown in Fig. 11. That is to say, the entangled state can be transmitted perfectly \((T=1)\) with probability \(p_{1}\), while it is entirely effaced (\(T=0\)) with probability \(1-p_{1}\).

Fig. 11
figure 11

The randomly blocked channel which shows the transmittance is fading randomly with \(T=1\) or \(T=0\)

Fig. 12
figure 12

The parameters \(T_\mathrm{nf}\) and \(\xi _\mathrm{nf}\) as functions of perfect transmitted probability \(p_{1}\)

Different from beam wandering case, in the randomly blocked case the parameters \(T_\mathrm{nf}=p^{2}_{1}\) and \(\xi _\mathrm{nf}=(p_{1}-p^{2}_{1})(V-1+\xi )\). In Fig. 12, we show \(T_\mathrm{nf}\) and \(\xi _\mathrm{nf}\) as functions of probability \(p_{1}\). It is clear that \(T_\mathrm{nf}\) increases with the increase of probability \(p_{1}\) and can reach perfect transmittance when \(p_{1}=1\), while \(\xi _\mathrm{nf}\) reaches a maximum of 0.5 when \(p_{1}=0.5\).

Appendix D: Analysis of log-normal model

The transmittance of the log-normal probability distribution is given by

$$\begin{aligned} P_{N}=\frac{1}{T\tau _{n}\sqrt{2\pi }}\exp \left[ -\frac{(-\ln {T}-\mu )^{2}}{2\tau ^{2}_{n}}\right] , \end{aligned}$$
(33)

where \(\mu =-\ln (\frac{\langle T\rangle ^{2}}{\sqrt{\langle T^{2}\rangle }})\) and \(\tau ^{2}_{n}=\ln (\frac{\langle T^{2}\rangle }{\langle T\rangle ^{2}})\) represent parameters of the log-normal distribution. Here, the first and second moments of transmittance is given by

$$\begin{aligned} \langle T\rangle= & {} \int _{\partial } d^{2}\varUpsilon \varGamma _{2}(\varUpsilon ), \end{aligned}$$
(34)
$$\begin{aligned} \langle T^{2}\rangle= & {} \int _{\partial } d^{2}\varUpsilon _{1}d^{2}\varUpsilon _{2}\varGamma _{4}(\varUpsilon _{1}, \varUpsilon _{2}), \end{aligned}$$
(35)

where \(\varUpsilon _{i}=(x_{i}, y_{i})'\) (i=1,2) stands for the vector of transverse coordinates, \(\varGamma _{2}\) and \(\varGamma _{4}\) are the field coherence functions (detailed expressions of \(\varGamma _{2}\) and \(\varGamma _{4}\) are shown in Ref. [23]), and \(\partial \) represents the circular aperture opening area. Note that \(\mu \) and \(\tau ^{2}_{n}\) are related to \(\langle T\rangle \) and \(\langle T^{2}\rangle \).

The \(\langle T\rangle \) shown in Eq. (34) can be definitely estimated as [23]

$$\begin{aligned} \langle T\rangle =1-\exp \left[ -\frac{2R^{2}}{\langle W^{2}\rangle }\right] , \end{aligned}$$
(36)

where R represents the aperture radius and

$$\begin{aligned} \langle W^{2}\rangle =\langle S_{xx}\rangle +4\langle x^{2}_{0}\rangle \end{aligned}$$
(37)

is called “long-term” beam mean-square radius [24]. The \(\langle S_{xx}\rangle \) and \(\langle x^{2}_{0}\rangle \) are expressed as

$$\begin{aligned} \langle S_{xx}\rangle =4[\int _{{\mathbb {R}}^{2}}d^{2}\varUpsilon x^{2}\varGamma _{2}(\varUpsilon ;L)-\int _{{\mathbb {R}}^{4}}d^{2}\varUpsilon _{1}d^{2}\varUpsilon _{2}x_{1}x_{2}\varGamma _{4}(\varUpsilon _{1},\varUpsilon _{2};L)] \end{aligned}$$
(38)

and

$$\begin{aligned} \langle x^{2}_{0}\rangle =\int _{{\mathbb {R}}^{4}}d^{2}\varUpsilon _{1}d^{2}\varUpsilon _{2}x_{1}x_{2}\varGamma _{4}(\varUpsilon _{1},\varUpsilon _{2};L), \end{aligned}$$
(39)

where L stands for the distance at which a Gaussian beam propagates along the z axis onto the aperture plane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wu, X., Zhang, L. et al. Performance improvement of free-space continuous-variable quantum key distribution with an adaptive optics unit. Quantum Inf Process 18, 251 (2019). https://doi.org/10.1007/s11128-019-2360-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2360-0

Keywords

Navigation