Skip to main content
Log in

A universal protocol for controlled bidirectional quantum state transmission

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a universal protocol for controlled bidirectional quantum state transmission. The bidirectional transmission of \( n_{1} \)- and \( n_{2} \)-qubit equatorial states can be realized by using the \( 2n_{1} + 2n_{2} + 1 \)-qubit entangled state as the quantum channel, where \( n_{1} ,n_{2} \) are arbitrary nonzero positive integers. First, the quantum channel is constructed by using Hadamard (H) and CNOT operations. Furthermore, after the protocol completed, the desired state can be obtained simultaneously, securely and determinately. Second, two examples are given. One is a symmetric protocol which can complete the bidirectional transmission of two-qubit equatorial state. The other is an asymmetric protocol, where Alice transmits a single-qubit equatorial state to Bob and Bob transmits a four-qubit equatorial state to Alice. To the best of our knowledge, it is the first time to realize the bidirectional transmission of arbitrary-qubit equatorial state. At last, we analyze the performance of the protocol. Some comparisons with other protocols are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118(22), 220501 (2017)

    Article  ADS  Google Scholar 

  2. Kogias, I., Xiang, Y., He, Q., Adesso, G.: Unconditional security of entanglement-based continuous-variable quantum secret sharing. Phys. Rev. A 95(1), 012315 (2017)

    Article  ADS  Google Scholar 

  3. Fortes, R., Rigolin, G.: Probabilistic quantum teleportation via thermal entanglement. Phys. Rev. A 96(2), 022315 (2017)

    Article  ADS  Google Scholar 

  4. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63(1), 014302 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  5. Huang, L., Zhao, H.X.: Controlled remote state preparation of an arbitrary two-qubit state by using GHZ states. Int. J. Theor. Phys. 56(3), 678–682 (2017)

    Article  Google Scholar 

  6. Choudhury, B.S., Dhara, A.: Joint remote state preparation for two-qubit equatorial states. Quantum Inf. Process. 14(1), 373–379 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  7. Devetak, I., Berger, T.: Low-entanglement remote state preparation. Phys. Rev. Lett. 87(19), 197901 (2001)

    Article  ADS  Google Scholar 

  8. Cao, T.B., Nguyen, B.A.: Deterministic controlled bidirectional remote state preparation. Adv. Nat. Sci. Nanosci. 5(1), 015003 (2013)

    Article  Google Scholar 

  9. Sharma, V., Shukla, C., Banerjee, S., Pathak, A.: Controlled bidirectional remote state preparation in noisy environment: a generalized view. Quantum Inf. Process. 14(9), 3441–3464 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  10. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Bidirectional controlled joint remote state preparation. Quantum Inf. Process. 14(11), 4263–4278 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  11. Wang, X.Y., Mo, Z.W.: Bidirectional controlled joint remote state preparation via a seven-qubit entangled state. Int. J. Theor. Phys. 56(4), 1052–1058 (2017)

    Article  Google Scholar 

  12. Zhang, D., Zha, X., Duan, Y., Wei, Z.H.: Deterministic controlled bidirectional remote state preparation via a six-qubit maximally entangled state. Int. J. Theor. Phys. 55(1), 440–446 (2016)

    Article  Google Scholar 

  13. Zhang, D., Zha, X., Duan, Y., Yang, Y.: Deterministic controlled bidirectional remote state preparation via a six-qubit entangled state. Quantum Inf. Process. 15(5), 2169–2179 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  14. Sang, Z.W.: Bidirectional controlled quantum information transmission by using a five-qubit cluster state. Int. J. Theor. Phys. 56(11), 3400–3404 (2017)

    Article  MathSciNet  Google Scholar 

  15. Song, Y., Ni, J.L., Wang, Z.Y., Lu, Y., Han, L.F.: Deterministic bidirectional remote state preparation of a-and symmetric quantum states with a proper quantum channel. Int. J. Theor. Phys. 56(10), 3175–3187 (2017)

    Article  Google Scholar 

  16. Wu, H., Zha, X.W., Yang, Y.Q.: Controlled bidirectional hybrid of remote state preparation and quantum teleportation via seven-qubit entangled state. Int. J. Theor. Phys. 57(1), 28–35 (2018)

    Article  Google Scholar 

  17. Chen, X.B., Sun, Y.R., Xu, G., Jia, H.Y., Qu, Z., Yang, Y.X.: Controlled bidirectional remote preparation of three-qubit state. Quantum Inf. Process. 16(10), 244 (2017)

    Article  ADS  Google Scholar 

  18. Sang, M.H., Nie, L.P.: Asymmetric bidirectional controlled quantum information transmission via seven-particle entangled state. Int. J. Theor. Phys. 56(11), 3638–3641 (2017)

    Article  MathSciNet  Google Scholar 

  19. Fang, S.H., Jiang, M.: A novel scheme for bidirectional and hybrid quantum information transmission via a seven-qubit state. Int. J. Theor. Phys. 57(2), 523–532 (2018)

    Article  MathSciNet  Google Scholar 

  20. Ma, P.C., Chen, G.B., Li, X.W., Zhan, Y.B.: Asymmetric bidirectional controlled remote preparation of an arbitrary four-qubit cluster-type state and a single-qubit state. Quantum Inf. Process. 16(12), 308 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  21. Chen, X.B., Su, Y., Xu, G., Sun, Y., Yang, Y.X.: Quantum state secure transmission in network communications. Inf. Sci. 276, 363–376 (2014)

    Article  MathSciNet  Google Scholar 

  22. Wei, J., Shi, L., Zhu, Y., Xue, Y., Xu, Z., Jiang, J.: Deterministic remote preparation of arbitrary multi-qubit equatorial states via two-qubit entangled states. Quantum Inf. Process. 17(3), 70 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  23. Thapliyal, K., Verma, A., Pathak, A.: A general method for selecting quantum channel for bidirectional controlled state teleportation and other schemes of controlled quantum communication. Quantum Inf. Process. 14(12), 4601–4614 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  24. Yuan, H., Liu, Y.M., Zhang, W., Zhang, Z.J.: Optimizing resource consumption, operation complexity and efficiency in quantum-state sharing. J. Phys. B At. Mol. Opt. Phys. 41(14), 145506 (2008)

    Article  ADS  Google Scholar 

  25. Guo, R., Zhang, Z., Liu, X., Liu, C.: Existence, uniqueness, and exponential stability analysis for complex-valued memristor-based BAM neural networks with time delays. Appl. Math. Comput. 311, 100–117 (2017)

    Article  MathSciNet  Google Scholar 

  26. Pang, Z., Liu, G., Zhou, D., Sun, D.: Data-based predictive control for networked nonlinear systems with packet dropout and measurement noise. J. Syst. Sci. Complexity 30, 1072–1083 (2017)

    Article  MathSciNet  Google Scholar 

  27. Li, L., Wang, Z., Li, Y., Shen, H., Lu, J.: Hopf bifurcation analysis of a complex-valued neural network model with discrete and distributed delays. Appl. Math. Comput. 330, 152–169 (2018)

    MathSciNet  Google Scholar 

  28. Shen, H., Song, X.N., Li, F., Wang, Z., Chen, B.: Finite-time L2–L∞ filter design for networked Markov switched singular systems: a unified method. Appl. Math. Comput. 321, 450–462 (2018)

    MathSciNet  Google Scholar 

  29. Xu, G., Xiao, K., Li, Z.P., Niu, X.X., Ryan, M.: Controlled secure direct communication protocol via the three-qubit partially entangled set of states. Comput. Mater. Continua 58(3), 809–827 (2019)

    Google Scholar 

  30. Xu, G., Chen, X.B., Dou, Z., et al.: Novel criteria for deterministic remote state preparation via the entangled six-qubit state. Entropy 18, 267 (2016)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgement

This project is supported by NSFC (Grant Nos. 61671087, 61272514, 61170272, 61003287), the Fok Ying Tong Education Foundation (Grant No. 131067), the Major Science and Technology Support Program of Guizhou Province (Grant No. 20183001) and the Foundation of State Key Laboratory of Public Big Data (2018BDKFJJ018) and sponsored by CCF-Tencent Open Fund WeBank Special Funding (CCF-WebankRAGR20180104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-Bo Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, YR., Xiang, N., Dou, Z. et al. A universal protocol for controlled bidirectional quantum state transmission. Quantum Inf Process 18, 281 (2019). https://doi.org/10.1007/s11128-019-2390-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2390-7

Keywords

Navigation