Skip to main content
Log in

Ab initio phase estimation at the shot noise limit with on–off measurement

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Phase resolution at the shot noise limit can be achieved with coherent states and on–off measurement. However, the estimation of an unknown phase using this scheme is still missing. Here, we experimentally demonstrate an ab initio phase estimation at the shot noise limit using on–off measurement and efficient Bayesian inference algorithm. The performance of the schemes with and without real-time feedback control is compared. The scheme with feedback control eliminates the ambiguity in the phase estimation and accelerates the convergence to true value. The shot noise limit that defines the ultimate precision is saturated independent of the true phase after about 150 rounds of measurement and feedback control. Our protocol may find important applications in practical precision metrology when only a limited number of measurements are allowed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Taylor, M.A., Janousek, J., Daria, V., Knittel, J., Hage, B., Bachor, H.A., Bowen, W.P.: Biological measurement beyond the quantum limit. Nat. Photonics 7(3), 229–233 (2013)

    Article  ADS  Google Scholar 

  2. Ono, T., Okamoto, R., Takeuchi, S.: An entanglement-enhanced microscope. Nat. Commun. 4(4), 2426 (2013)

    Article  ADS  Google Scholar 

  3. Hoff, U.B., Harris, G.I., Madsen, L.S., Kerdoncuff, H., Lassen, M., Nielsen, B.M., Bowen, W.P., Andersen, U.L.: Quantum-enhanced micromechanical displacement sensitivity. Opt. Lett. 38(9), 1413–1415 (2013)

    Article  ADS  Google Scholar 

  4. Crespi, A., Lobino, M., Matthews, J.C.F., Politi, A., Neal, C.R., Ramponi, R., Osellame, R., O’Brien, J.L.: Measuring protein concentration with entangled photons. Appl. Phys. Lett. 100(23), 233704 (2012)

    Article  ADS  Google Scholar 

  5. Caves, C.M.: Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693–1708 (1981)

    Article  ADS  Google Scholar 

  6. Xiao, M., Wu, L.A., Kimble, H.J.: Precision measurement beyond the shot-noise limit. Phys. Rev. Lett. 59(3), 278–281 (1987)

    Article  ADS  Google Scholar 

  7. Holland, M.J., Burnett, K.: Interferometric detection of optical phase shifts at the Heisenberg limit. Phys. Rev. Lett. 71(9), 1355–1358 (1993)

    Article  ADS  Google Scholar 

  8. Grangier, P., Slusher, R.E., Yurke, B., LaPorta, A.: Squeezed-light-enhanced polarization interferometer. Phys. Rev. Lett. 59(19), 2153–2156 (1987)

    Article  ADS  Google Scholar 

  9. Pezzé, L., Smerzi, A.: Mach–Zehnder interferometry at the Heisenberg limit with coherent and squeezed-vacuum light. Phys. Rev. Lett. 100(7), 073601 (2008)

    Article  ADS  Google Scholar 

  10. Jarzyna, M., Demkowicz-Dobrzański, R.: Quantum interferometry with and without an external phase reference. Phys. Rev. A 85(1), 011801 (2012)

    Article  ADS  Google Scholar 

  11. Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72(22), 3439–3443 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Cremer, H.: Mathematical Methods of Statistics. Princeton University Press, New York (1999)

    Google Scholar 

  13. Gammelmark, S., Mølmer, K.: Fisher information and the quantum Cramér-Rao sensitivity limit of continuous measurements. Phys. Rev. Lett. 112(17), 170401 (2014)

    Article  ADS  Google Scholar 

  14. Hudelist, F., Kong, J., Liu, C., Jing, J., Ou, Z.Y., Zhang, W.: Quantum metrology with parametric amplifier-based photon correlation interferometers. Nat. Commun. 5(1), 3049 (2014)

    Article  ADS  Google Scholar 

  15. Ou, Z.Y.: Enhancement of the phase-measurement sensitivity beyond the standard quantum limit by a nonlinear interferometer. Phys. Rev. A 85(2), 023815 (2012)

    Article  ADS  Google Scholar 

  16. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330 (2004)

    Article  ADS  Google Scholar 

  17. Kessler, E.M., Lovchinsky, I., Sushkov, A.O., Lukin, M.D.: Quantum error correction for metrology. Phys. Rev. Lett. 112(15), 150802 (2014)

    Article  ADS  Google Scholar 

  18. Dür, W., Skotiniotis, M., Fröwis, F., Kraus, B.: Improved quantum metrology using quantum error correction. Phys. Rev. Lett. 112(8), 080801 (2014)

    Article  ADS  Google Scholar 

  19. Gross, C., Zibold, T., Nicklas, E., Estève, J., Oberthaler, M.K.: Nonlinear atom interferometer surpasses classical precision limit. Nature 464, 1165 (2010)

    Article  ADS  Google Scholar 

  20. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photonics 5(4), 222 (2011)

    Article  ADS  Google Scholar 

  21. Mitchell, M.W., Lundeen, J.S., Steinberg, A.M.: Super-resolving phase measurements with a multiphoton entangled state. Nature 429, 161–164 (2004)

    Article  ADS  Google Scholar 

  22. Dobrzanski, R.D., Maccone, L.: Using entanglement against noise in quantum metrology. Phys. Rev. Lett. 113, 250801 (2014)

    Article  ADS  Google Scholar 

  23. Nagata, T., Okamoto, R., O’Brien, J.L., Sasaki, K., Takeuchi, S.: Beating the standard quantum limit with four-entangled photons. Science 316, 726–729 (2007)

    Article  ADS  Google Scholar 

  24. Xiang, G.Y., Higgins, B.L., Berry, D.W., Wiseman, H.M., Pryde, G.J.: Entanglement-enhanced measurement of a completely unknown optical phase. Nat. Photonics 5(1), 43–47 (2011)

    Article  ADS  Google Scholar 

  25. Boto, A.N., Kok, P., Abrams, D.S., Braunstein, S.L., Williams, C.P., Dowling, J.P.: Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett. 85(13), 2733 (2000)

    Article  ADS  Google Scholar 

  26. Peter, N.T., Smith, B.J., Datta, A., Zhang, L., Dorner, U., Walmsley, I.A.: Real-world quantum sensors: evaluating resources for precision measurement. Phys. Rev. Lett. 107(11), 113603 (2010)

    Article  Google Scholar 

  27. A Datta, L. Zhang N. Thomas-Peter, U. Dorner, B. J. Smith, and I. A. Walmsley, “Quantum metrology with imperfect states and detectors,” Phys. Rev. A 83(6), 063836 (2011)

  28. Kacprowicz, M., Demkowiczdobrza-Nacuteski, R., Wasilewski, W., Banaszek, K., Walmsley, I.A.: Experimental quantum-enhanced estimation of a lossy phase shift. Nat. Photonics 4(6), 357–360 (2009)

    Article  ADS  Google Scholar 

  29. Cohen, L., Istrati, D., Dovrat, L., Eisenberg, H.S.: Super-resolved phase measurements at the shot noise limit by parity measurement. Opt. Express 22(10), 11945–11953 (2014)

    Article  ADS  Google Scholar 

  30. Schäfermeier, C., Madsen, L.S., Ježek, M., Gehring, T., Andersen, U.L.: Deterministic phase measurements exhibiting super-sensitivity and super-resolution. Optica 5(1), 60–64 (2018)

    Article  ADS  Google Scholar 

  31. Distante, E., Ježek, M., Andersen, U.L.: Deterministic superresolution with coherent states at the shot noise limit. Phys. Rev. Lett. 111(3), 033603 (2013)

    Article  ADS  Google Scholar 

  32. Izumi, S., Takeoka, M., Wakui, K., Fujiwara, M., Ema, K., Sasaki, M.: Optical phase estimation via coherent state and displaced photon counting. Phys. Rev. A 94(3), 033842 (2016)

    Article  ADS  Google Scholar 

  33. Gerry, C.C., Mimih, J.: The parity operator in quantum optical metrology. Contemp. Phys. 51(6), 497–511 (2010)

    Article  ADS  Google Scholar 

  34. Anisimov, P.M., Raterman, G.M., Chiruvelli, A., Plick, W.N., Huver, S.D., Lee, H., Dowling, J.P.: Quantum metrology with two_mode squeezed vacuum: parity detection beats the heisenberg limit. Phys. Rev. Lett. 104(10), 103602 (2010)

    Article  ADS  Google Scholar 

  35. Seshadreesan, K.P., Kim, S., Dowling, J.P., Lee, H.: Phase estimation at the quantum Cramér-Rao bound via parity detection. Phys. Rev. A 87(4), 043833 (2013)

    Article  ADS  Google Scholar 

  36. Antonio, A., Cariolaro, G., Pierobon, G.: Efficient optimal minimum error discrimination of symmetric quantum states. Phys. Rev. A 81(1), 012315 (2010)

    Article  ADS  Google Scholar 

  37. Pezzé, L., Smerzi, A., Khoury, G., Hodelin, J.F., Bouwmeester, D.: Phase detection at the quantum limit with multiphoton mach-zehnder interferometry. Phys. Rev. Lett. 99(22), 223602 (2007)

    Article  ADS  Google Scholar 

  38. Olivares, S., Paris, M.G.A.: Bayesian estimation in homodyne interferometry. J. Phys. B: At. Mol. Opt. Phys. 42(5), 55506–55512 (2009)

    Article  ADS  Google Scholar 

  39. Berni, A.A., Gehring, T., Nielsen, B.M., Händchen, V., Paris, M.G.A., Andersen, U.L.: Ab initio quantum-enhanced optical phase estimation using real-time feedback control. Nat. Photonics 9(9), 577–581 (2015)

    Article  ADS  Google Scholar 

  40. Wiebe, N., Granade, C.: Efficient bayesian phase estimation. Phys. Rev. Lett. 117(1), 010503 (2016)

    Article  ADS  Google Scholar 

  41. Paesani, S., Gentile, A.A., Santagati, R., Wang, J., Wiebe, N., Tew, D.P., et al.: Experimental bayesian quantum phase estimation on a silicon photonic chip. Phys. Rev. Lett. 118(10), 100503 (2017)

    Article  ADS  Google Scholar 

  42. Wang, J., Paesani, S., Santagati, R., Knauer, S., Gentile, A.A., Wiebe, N., Petruzzella, M., O’Brien, J.L., Rarity, J.G., Laing, A., Thompson, M.G.: Experimental quantum Hamiltonian learning. Nat. Phys. 13(6), 551–555 (2017)

    Article  Google Scholar 

  43. Barndorff-Nielsen, O.E., Gill, R.D.: Fisher information in quantum statistics. J. Phys. A: Gen. Phys. 33(24), 4481–4490 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Lang, M.D., Caves, C.M.: Optimal quantum-enhanced interferometry. Phys. Rev. A 90(2), 025802 (2014)

    Article  ADS  Google Scholar 

  45. Jing, L., Jing, X., Wang, G.: Phase-matching condition for enhancement of phase sensitivity in quantum metrology. Phys. Rev. A 88(4), 042316 (2013)

    Article  ADS  Google Scholar 

  46. Lumino, A., Polino, E., Rab, A.S., Milani, G., Spagnolo, N., Wiebe, N., Sciarrino, F.: Experimental phase estimation enhanced by machine learning. Phys. Rev. Appl. 10, 044033 (2018)

    Article  ADS  Google Scholar 

  47. Jing, L., Yuan, H.D.: Quantum parameter estimation with optimal control. Phys. Rev. A 96(1), 012117 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  48. Jing, L., Yuan, H.D.: Control-enhanced multiparameter quantum estimation. Phys. Rev. A 96(4), 042114 (2017)

    Article  ADS  Google Scholar 

  49. Hentschel, A., Sanders, B.C.: Machine learning for precise quantum measurement. Phys. Rev. Lett. 104(6), 063603 (2010)

    Article  ADS  Google Scholar 

  50. Hentschel, A., Sanders, B.C.: Efficient algorithm for optimizing adaptive quantum metrology processes. Phys. Rev. Lett. 107(23), 233601 (2011)

    Article  ADS  Google Scholar 

  51. Huang, Z., Motes, K.R., Anisimov, P.M., et al.: Adaptive phase estimation with two-mode squeezed vacuum and parity measurement. Phys. Rev. A 95(5), 053837 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China under Grant No. 2017YFA0303703, the National Natural Science Foundation of China under Grants Nos. 91536113, 11690032, 61490711, 11474159, 91836303, the Fundamental Research Funds for the Central Universities under Grant No. 021314380111, the Nanjing University Innovation and Creative Program for PhD candidate (2016017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijian Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, K., Xu, H., Zhang, A. et al. Ab initio phase estimation at the shot noise limit with on–off measurement. Quantum Inf Process 18, 329 (2019). https://doi.org/10.1007/s11128-019-2450-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2450-z

Keywords

Navigation