Skip to main content
Log in

Controllable optical response properties in a hybrid optomechanical system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we study theoretically the optical response properties of the output field in a hybrid optomechanical system, in which a degenerate optical parametric amplifier (OPA) and a \(\varLambda \)-type three-level atomic ensemble are placed in a driven optical cavity with a moving end mirror. We show that due to the presence of the OPA and the atomic medium, our proposal has the ability to exhibit the optical tristability and multiple optomechanically induced transparency (OMIT)-like effects. Moreover, the combined effects of optical amplification and OMIT-like as well as the tunable switch from slow-to-fast light can be realized by tuning the gain coefficient of the OPA and the phase of the field driving the OPA. In addition, the role of the OPA on the higher-order sideband generation has also been investigated. We find that the presence of the OPA contributes to the enhancement of the second-order sideband generation. These results provide a new way to engineer the hybrid optomechanical devices for applications in optical communications and signal processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aspelmeyer, M., Kipenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014)

    Article  ADS  Google Scholar 

  2. Wilson-Rae, I., Zoller, P., Imamoḡlu, A.: Laser cooling of a nanomechanical resonator mode to its quantum ground state. Phys. Rev. Lett. 92, 075507 (2004)

    Article  ADS  Google Scholar 

  3. Marquardt, F., Chen, J.P., Clerk, A.A., Girvin, S.M.: quantum theory of cavity assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007)

    Article  ADS  Google Scholar 

  4. Genes, C., Vitali, D., Tombesi, P., Gigan, S., Aspelmeyer, M.: Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes. Phys. Rev. A 77, 033804 (2008)

    Article  ADS  Google Scholar 

  5. Huang, S., Agarwal, G.S.: Enhancement of cavity cooling of a micromechanical mirror using parametric interactions. Phys. Rev. A 79, 013821 (2009)

    Article  ADS  Google Scholar 

  6. Riedinger, R., Hong, S., Norte, R.A., Slater, J.A., Shang, J., Krause, A.G., Anant, V., Aspelmeyer, M., Gröblacher, S.: Non-classical correlations between single photons and phonons from a mechanical oscillator. Nature 530, 313 (2016)

    Article  ADS  Google Scholar 

  7. Marquardt, F., Harris, J.G.E., Girvin, S.M.: Dynamical multistability induced by radiation pressure in high-finesse micromechanical optical cavities. Phys. Rev. Lett. 96, 103901 (2006)

    Article  ADS  Google Scholar 

  8. Kyriienko, O., Liew, T.C.H., Shelykh, I.A.: Optomechanics with cavity polaritons: dissipative coupling and unconventional bistability. Phys. Rev. Lett. 112, 076402 (2014)

    Article  ADS  Google Scholar 

  9. Milburn, G., Walls, D.: Production of squeezed states in a degenerate parametric amplifier. Opt. Commun. 39, 401 (1981)

    Article  ADS  Google Scholar 

  10. Agarwal, G.S., Huang, S.: Strong mechanical squeezing and its detection. Phys. Rev. A 80, 033807 (2009)

    Article  ADS  Google Scholar 

  11. Kronwald, A., Marquardt, F., Clerk, A.A.: Arbitrarily large steady-state bosonic squeezing via dissipation. Phys. Rev. A 88, 063833 (2013)

    Article  ADS  Google Scholar 

  12. Lü, X.Y., Liao, J.Q., Tian, L., Nori, F.: Steady-state mechanical squeezing in an optomechanical system via Duffing nonlinearity. Phys. Rev. A 91, 013834 (2015)

    Article  ADS  Google Scholar 

  13. Lü, X.Y., Wu, Y., Johansson, J.R., Jing, H., Zhang, J., Nori, F.: Squeezed optomechanics with phase-matched amplification and dissipation. Phys. Rev. Lett. 114, 093602 (2015)

    Article  ADS  Google Scholar 

  14. Agarwal, G.S., Huang, S.: Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A 81, 041803 (2010)

    Article  ADS  Google Scholar 

  15. Agarwal, G.S., Huang, S.: Electromagnetically induced transparency with quantized fields in optocavity mechanics. Phys. Rev. A 83, 043826 (2011)

    Article  ADS  Google Scholar 

  16. Weis, S., Rivière, R., Deléglise, S., Gavartin, E., Arcizet, O., Schliesser, A., Kippenberg, T.J.: Optomechanically induced transparency. Science 330, 1520 (2010)

    Article  ADS  Google Scholar 

  17. Lin, Q., Rosenberg, J., Chang, D., Camacho, R., Eichenfield, M., Vahala, K.J., Painter, O.: Coherent mixing of mechanical excitations in nano-optomechanical structures. Nat. Photonics 4, 236 (2010)

    Article  ADS  Google Scholar 

  18. Safavi-Naeini, A.H., Alegre, T.M., Chan, J., Eichenfield, M., Winger, M., Lin, Q., Hill, J.T., Chang, D.E., Painter, O.: Electromagnetically induced transparency and slow light with optomechanics. Nature 472, 69 (2011)

    Article  ADS  Google Scholar 

  19. Massel, F., Cho, S.U., Pirkkalainen, J.M., Hakonen, P.J., Heikkilä, T.T., Sillanpää, M.A.: Multimode circuit optomechanics near the quantum limit. Nat. Commun. 3, 987 (2012)

    Article  ADS  Google Scholar 

  20. Karuza, M., Biancofiore, C., Bawaj, M., Molinelli, C., Galassi, M., Natali, R., Tombesi, P., Di Giuseppe, G., Vitali, D.: Electromagnetically induced transparency in a membrane-in-the-middle setup in the room temperature. Phys. Rev. A 88, 013804 (2013)

    Article  ADS  Google Scholar 

  21. Boller, K.J., Imamoglu, A., Harris, S.E.: Observation of electromagnetically induced transparency. Phys. Rev. Lett. 66, 2593 (1991)

    Article  ADS  Google Scholar 

  22. Kasapi, A., Jain, M., Yin, G.Y., Harris, S.E.: Electromagnetically induced transparency: propagation dynamics. Phys. Rev. Lett. 74, 2447 (1995)

    Article  ADS  Google Scholar 

  23. Sun, C.P., Li, Y., Liu, X.F.: Quasi-spin-wave quantum memories with a dynamical symmetry. Phys. Rev. Lett. 91, 147903 (2003)

    Article  ADS  Google Scholar 

  24. Li, Y., Sun, C.P.: Group velocity of a probe light in an ensemble of \(\Lambda \) atoms under two-photon resonance. Phys. Rev. A. 69, 051802 (R) (2004)

    Article  ADS  Google Scholar 

  25. Gong, Z.R., Ian, H., Zhou, L., Sun, C.P.: Controlling quasibound states in a one-dimensional continuum through an electromagnetically-induced-transparency mechanism. Phys. Rev. A 78, 053806 (2008)

    Article  ADS  Google Scholar 

  26. Fleischhauer, M., Imamoglu, A., Marangos, J.P.: Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633 (2005)

    Article  ADS  Google Scholar 

  27. Chang, Y., Shi, T., Liu, Y.X., Sun, C.P., Nori, F.: Multistability of electromagnetically induced transparency in atom-assisted optomechanical cavities. Phys. Rev. A 83, 063826 (2011)

    Article  ADS  Google Scholar 

  28. Teufel, J.D., Li, D., Allman, M.S., Cicak, K., Sirois, A.J., Whittaker, J.D., Simmonds, R.W.: Circuit cavity electromechanics in the strong-coupling regime. Nature 471, 204 (2011)

    Article  ADS  Google Scholar 

  29. Tarhan, D., Huang, S., Müstecaplıoğlu, Ö.E.: Superluminal and ultraslow light propagation in optomechanical systems. Phys. Rev. A 87, 013824 (2013)

    Article  ADS  Google Scholar 

  30. Akram, M., Khan, M., Saif, F.: Tunable fast and slow light in a hybrid optomechanical system. Phys. Rev. A 92, 023846 (2015)

    Article  ADS  Google Scholar 

  31. He, W., Li, J.J., Zhu, K.D.: Coupling-rate determination based on radiation-pressure-induced normal mode splitting in cavity optomechanical systems. Opt. Lett. 35, 339–341 (2010)

    Article  ADS  Google Scholar 

  32. Stannigel, K., Rabl, P., Sorensen, A.S., Lukin, M.D., Zoller, P.: Optomechanical transducers for quantum information processing. Phys. Rev. A 84, 042341 (2011)

    Article  ADS  Google Scholar 

  33. Mcgee, S.A., Meiser, D., Regal, C.A., Lehnert, K.W., Holland, M.J.: Mechanical resonators for storage and transfer of electrical and optical quantum states. Phys. Rev. A 87, 053818 (2013)

    Article  ADS  Google Scholar 

  34. Kronwald, A., Marquardt, F.: Optomechanically induced transparency in the nonlinear quantum regime. Phys. Rev. Lett. 111, 133601 (2013)

    Article  ADS  Google Scholar 

  35. Børkje, K., Nunnenkamp, A., Teufel, J.D., Girvin, S.M.: Signatures of nonlinear cavity optomechanics in the weak coupling regime. Phys. Rev. Lett. 111, 053603 (2013)

    Article  ADS  Google Scholar 

  36. Lü, H., Jiang, Y., Wang, Y.Z., Jing, H.: Optomechanically induced transparency in a spinning resonator. Photonics Res. 5(4), 367 (2017)

    Article  Google Scholar 

  37. Jing, H., Ozdemir, S.K., Geng, Z., Zhang, J., Lü, X.Y., Peng, B., Yang, L., Nori, F.: Optomechanically-induced transparency in parity-time-symmetric microresonators. Sci. Rep. 5, 9663 (2015)

    Article  Google Scholar 

  38. Jiao, Y., Lü, H., Qian, J., Li, Y., Jing, H.: Nonlinear optomechanics with gain and loss: amplifying higher-order sideband and group delay. New J. Phys. 18, 083034 (2016)

    Article  ADS  Google Scholar 

  39. Liu, Y.L., Wu, R., Zhang, J., Özdemir, S.K., Yang, L., Nori, F., Liu, Y.X.: Controllable optical response by modifying the gain and loss of a mechanical resonator and cavity mode in an optomechanical system. Phys. Rev. A 95, 013843 (2017)

    Article  ADS  Google Scholar 

  40. Zhang, J.Q., Li, Y., Feng, M., Xu, Y.: Precision measurement of electrical charge with optomechanically induced transparency. Phys. Rev. A 86, 053806 (2012)

    Article  ADS  Google Scholar 

  41. Ian, H., Gong, Z.R., Liu, Y.X., Sun, C.P., Nori, F.: Cavity optomechanical coupling assisted by an atomic gas. Phys. Rev. A 78, 013824 (2008)

    Article  ADS  Google Scholar 

  42. Wang, H., Gu, X., Liu, Y.X., Miranowicz, A., Nori, F.: Optomechanical analog of two-color electromagnetically induced transparency: photon transmission through an optomechanical device with a two-level system. Phys. Rev. A 90, 023817 (2014)

    Article  ADS  Google Scholar 

  43. Xiao, Y., Yu, Y.F., Zhang, Z.M.: Controllable optomechanically induced transparency and ponderomotive squeezing in an optomechanical system assisted by an atomic ensemble. Opt. Exp. 22, 017979 (2014)

    Article  Google Scholar 

  44. Wang, H., Gu, X., Liu, Y.X., Miranowicz, A., Nori, F.: Tunable photon blockade in a hybrid system consisting of an optomechanical device coupled to a two-level system. Phys. Rev. A 92, 033806 (2015)

    Article  ADS  Google Scholar 

  45. Ullah, K., Jing, H., Saif, F.: Multiple electromechanically-induced-transparency windows and Fano resonances in hybrid nano-electro-optomechanics. Phys. Rev. A 97, 033812 (2018)

    Article  ADS  Google Scholar 

  46. Wang, T., Zheng, M.H., Bai, C.H., Wang, D.Y., Zhu, A.D., Wang, H.F., Zhang, S.: Normal-mode splitting and optomechanically induced absorption, amplification, and transparency in a hybrid optomechanical system. Ann. Phys. 530, 1800228 (2018)

    Article  Google Scholar 

  47. Huang, S., Agarwal, G.S.: Normal-mode splitting in a coupled system of a nanomechanical oscillator and a parametric amplifier cavity. Phys. Rev. A 80, 033807 (2009)

    Article  ADS  Google Scholar 

  48. Kumar, T., Bhattacherjee, A.B.: Dynamics of a movable micromirror in a nonlinear optical cavity. Phys. Rev. A 81, 013835 (2010)

    Article  ADS  Google Scholar 

  49. Shahidani, S., Naderi, M.H., Soltanolkotabi, M.: Control and manipulation of electromagnetically induced transparency in a nonlinear optomechanical system with two movable mirrors. Phys. Rev. A 88, 053813 (2013)

    Article  ADS  Google Scholar 

  50. Jiao, Y.F., Lu, T.X., Jing, H.: Optomechanical second-order sidebands and group delays in a Kerr resonator. Phys. Rev. A 97, 013843 (2018)

    Article  ADS  Google Scholar 

  51. Schliesser, A., Del’Haye, P., Nooshi, N., Vahala, K.J., Kippenberg, T.J.: Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Phys. Rev. Lett. 97, 243905 (2006)

    Article  ADS  Google Scholar 

  52. Teufel, J.D., Li, D., Allman, M.S., Cicak, K., Sirois, A.J., Whittaker, J.D., Simmonds, R.W.: Circuit cavity electromechanics in the strong-coupling regime. Nature 471, 204 (2011)

    Article  ADS  Google Scholar 

  53. Palomaki, T.A., Harlow, J.W., Teufel, J.D., Simmonds, R.W., Lehnert, K.W.: Coherent state transfer between itinerant microwave fields and a mechanical oscillator. Nature 495, 210 (2013)

    Article  ADS  Google Scholar 

  54. Nation, P.D., Suh, J., Blencowe, M.P.: Ultrastrong optomechanics incorporating the dynamical Casimir effect. Phys. Rev. A 93, 022510 (2016)

    Article  ADS  Google Scholar 

  55. Ilchenko, V.S., Savchenkov, A.A., Matsko, A.B., Maleki, L.: Whispering-gallery-mode electro-optic modulator and photonic microwave receiver. J. Opt. Soc. Am. B 20, 333 (2003)

    Article  ADS  Google Scholar 

  56. Ilchenko, V.S., Savchenkov, A.A., Matsko, A.B., Maleki, L.: Nonlinear optics and crystalline whispering gallery mode cavities. Phys. Rev. Lett. 92, 043903 (2004)

    Article  ADS  Google Scholar 

  57. Savchenkov, A.A., Matsko, A.B., Mohageg, M., Strekalov, D.V., Maleki, L.: Parametric oscillations in a whispering gallery resonator. Opt. Lett. 32, 157 (2007)

    Article  ADS  Google Scholar 

  58. Fürst, J.U., Strekalov, D.V., Elser, D., Lassen, M., Andersen, U.L., Marquardt, C., Leuchs, G.: Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator. Phys. Rev. Lett. 104, 153901 (2010)

    Article  ADS  Google Scholar 

  59. Fürst, J.U., Strekalov, D.V., Elser, D., Aiello, A., Andersen, U.L., Marquardt, C., Leuchs, G.: Quantum light from a whispering-gallery-mode disk resonator. Phys. Rev. Lett. 106, 113901 (2011)

    Article  ADS  Google Scholar 

  60. Förtsch, M., Fürst, J.U., Wittmann, C., Strekalov, D., Aiello, A., Chekhova, M.V., Silberhorn, C., Leuchs, G., Marquardt, C.: A versatile source of single photons for quantum information processing. Nat. Commun. 4, 1818 (2013)

    Article  ADS  Google Scholar 

  61. Förtsch, M., Schunk, G., Fürst, J.U., Strekalov, D., Gerrits, T., Stevens, M.J., Sedlmeir, F., Schwefel, H.G., Nam, S.W., Leuchs, G., Marquardt, C.: Highly efficient generation of single-mode photon pairs from a crystalline whispering-gallery-mode resonator source. Phys. Rev. A 91, 023812 (2015)

    Article  ADS  Google Scholar 

  62. You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature 474, 589 (2011)

    Article  ADS  Google Scholar 

  63. Xiang, Z.L., Ashhab, S., You, J.Q., Nori, F.: Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623 (2013)

    Article  ADS  Google Scholar 

  64. Leghtas, Z., Touzard, S., Pop, I.M., Kou, A., Vlastakis, B., Petrenko, A., Sliwa, K.M., Narla, A., Shankar, S., Hatridge, M.J., Reagor, M.: Confining the state of light to a quantum manifold by engineered two-photon loss. Science 347, 853 (2015)

    Article  ADS  Google Scholar 

  65. Gu, X., Kockum, A.F., Miranowicz, A., Liu, Y.X., Nori, F.: Microwave photonics with superconducting quantum circuits. Phys. Rep. 718, 1–102 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. Aoki, T., Dayan, B., Wilcut, E., Bowen, W.P., Parkins, A.S., Kippenberg, T.J., Vahala, K.J., Kimble, H.J.: Observation of strong coupling between one atom and a monolithic microresonator. Nature 443, 7112 (2006)

    Google Scholar 

  67. Buck, J.R., Kimble, H.J.: Optimal sizes of dielectric microspheres for cavity QED with strong coupling. Phys. Rev. A 67, 033806 (2003)

    Article  ADS  Google Scholar 

  68. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  69. Macrì, V., Ridolfo, A., Di Stefano, O., Kockum, A.F., Nori, F., Savasta, S.: Nonperturbative dynamical Casimir effect in optomechanical systems: vacuum Casimir-Rabi splittings. Phys. Rev. X 8, 011031 (2018)

    Google Scholar 

  70. Wang, X., Qin, W., Miranowicz, A., Savasta, S., Nori, F.: Unconventional cavity optomechanics: nonlinear control of phonons in the acoustic quantum vacuum. arXiv:1902.09910 (2019)

  71. Xiong, H., Si, L.G., Zheng, A.S., Yang, X.X., Wu, Y.: Higher-order sidebands in optomechanically induced transparency. Phys. Rev. A 86, 013815 (2012)

    Article  ADS  Google Scholar 

  72. Autler, S.H., Townes, C.H.: Stark effect in rapidly varying fields. Phys. Rev. 100, 703 (1955)

    Article  ADS  Google Scholar 

  73. Anisimov, P.M., Dowling, J.P., Sanders, B.C.: Objectively discerning Autler–Townes splitting from electromagnetically induced transparency. Phys. Rev. Lett. 107, 163604 (2011)

    Article  ADS  Google Scholar 

  74. Peng, B., Özdemir, S.K., Chen, W., Nori, F., Yang, L.: What is and what is not electromagnetically induced transparency in whispering-gallery microcavities. Nat. Commun. 5, 55082 (2014)

    ADS  Google Scholar 

  75. Kong, C., Xiong, H., Wu, Y.: Coulomb-interaction-dependent effect of high-order sideband generation in an optomechanical system. Phys. Rev. A 95, 033820 (2017)

    Article  ADS  Google Scholar 

  76. Liu, S., Yang, W.X., Zhu, Z., Shui, T., Li, L.: Quadrature squeezing of a higher-order sideband spectrum in cavity optomechanics. Opt. Lett. 43, 9 (2018)

    Article  ADS  Google Scholar 

  77. Li, Y., Zhu, K.: High-order sideband optical properties of a DNA quantum dot hybrid system. Photonics Res. 1, 16 (2013)

    Article  Google Scholar 

Download references

Funding

Funding was provided by Natural Science Foundation of China (Grant No. 11774284).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Rong Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, XJ., Chen, H., Liu, WX. et al. Controllable optical response properties in a hybrid optomechanical system. Quantum Inf Process 18, 341 (2019). https://doi.org/10.1007/s11128-019-2454-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2454-8

Keywords

Navigation