Skip to main content
Log in

Quantum image restoration based on Hudson–Parthasarathy Schrodinger equation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a quantum–classical hybrid filtering scheme used for denoising of a classical noisy image field. This includes an iterative procedure of transforming pairs of classical image and noise fields into quantum states using standard classical–quantum conversion and then posing the problem of constructing an optimal unitary operator based on the Hudson–Parthasarathy quantum stochastic calculus. The noisy quantum image state is filtered using an optimum unitary operator followed by quantum–classical conversion of the denoised quantum image state. Finally, filtering of the resultant classical image is performed using the standard median filtering approach. In addition to the proposed algorithm, our work includes a theoretical display of the Schrodinger evolution in the presence of classical randomness. The results demonstrate the marked superiority of our proposed algorithm over the existing classical denoising scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA, pp. 124–134 (1994). https://doi.org/10.1109/SFCS.1994.365700

  2. Benioff, P.A.: Quantum mechanical Hamiltonian models of Turing machines. J. Stat. Phys. 29(3), 515–546 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  3. Feynman, R.: Simulating physics with computers. Int. J. Theor. Phys. 21(6/7), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  4. Feynman, R.: Quantum mechanical computers. Opt. News 11, 11–20 (1985)

    Article  Google Scholar 

  5. Deutsch, D.: Quantum theory, the Church–Turing principle, and the universal quantum Turing machine. Proc. R. Soc. Lond. A400, 97–117 (1985)

    Article  ADS  Google Scholar 

  6. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325–328 (1997)

    Article  ADS  Google Scholar 

  7. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  8. Long, G.L.: Grover algorithm with zero theoretical failure rate. Phys. Rev. A 64, 022307 (2001). https://doi.org/10.1103/PhysRevA.64.022307

    Article  ADS  Google Scholar 

  9. Long, G.L., Zhang, W.L., Li, Y.S., Niu, L.: Arbitrary phase rotation of the marked state cannot be used for Grover’s quantum search algorithm. Commun. Theor. Phys. 32, 335–338 (1999)

    Article  ADS  Google Scholar 

  10. Long, G.L., Li, Y.S., Zhang, W.L., Tu, C.C.: Dominant gate imperfection in Grover’s quantum search algorithm. Phys. Rev. A 61(4), 042305 (2000). https://doi.org/10.1103/PhysRevA.61.042305

    Article  ADS  Google Scholar 

  11. Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1995). Reprint of the 1980 edition

    Book  Google Scholar 

  12. Ai, Q., Li, Y.S., Long, G.L.: Influences of gate operation errors in the quantum counting algorithm. J. Sci. Technol. 21(6), 927–932 (2007)

    MathSciNet  Google Scholar 

  13. Choi, M.: Completely positive linear maps on complex matrices. Linear Algebra Appl. 10(3), 285–290 (1975)

    Article  MathSciNet  Google Scholar 

  14. Kraus, K.: General state changes in quantum theory. Ann. Phys. 64(2), 311–355 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  15. Stinespring, W.F.: Positive functions on \(\text{ C }^{*}\)-algebras. Proc. Am. Math. Soc. 6, 211–216 (1955)

    Google Scholar 

  16. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  17. Brasil, C.A., Fanchini, F.F., Napolitano, R.J.: A simple derivation of the Lindblad equation. arXiv:1110.2122v2 [quant-ph] (2012)

  18. Mastriani, Mario: Quantum Boolean image denoising. Quantum Inf. Process. 14(5), 1647–1673 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  19. Wheeler, N.: Problems at the quantum/classical interface (2001). http://ebookily.org/pdf/problems-at-the-quantum-classical interface-174658500.html

  20. Baylis, W.E., Cabrera, R., Keselica, D.: Quantum/classical interface: fermion spin. (2007) arXiv:0710.3144v2

  21. Landsman, N.P.: Between classical and quantum (2005). arXiv:quant-ph/0506082v2

  22. Wood, C.J., Biamonte, J.D., Cory, D.G.: Tensor networks and graphical calculus for open quantum systems. Quantum Inf. Comput. 15(9–10), 0759–0811 (2015)

    MathSciNet  Google Scholar 

  23. Usher, N., Browne, D.E.: Noise in one-dimensional measurement-based quantum computing. arXiv:1704.07298v1 [quant-ph] (2017)

  24. Wei, T.-C.: Quantum spin models for measurement-based quantum computation. Adv. Phys. X 3(1), 1461026 (2018)

    Google Scholar 

  25. Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9(1), 1–11 (2010)

    Article  MathSciNet  Google Scholar 

  26. Venegas-Andraca, S.E., Ball, J.L.: Storing images in entangled quantum systems. arXiv:quant-ph/0402085 (2003)

  27. Venegas-Andraca, S.E., Bose, S.: Storing, processing and retrieving an image using quantum mechanics. Proc. SPIE Conf. Quantum Inf. Comput. 5105, 137–147 (2003). https://doi.org/10.1117/12.485960

    Article  ADS  Google Scholar 

  28. Latorre, J.I.: Image compression and entanglement. arXiv:quant-ph/0510031v1 (2005)

  29. Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Rev. Mod. Phys. 86(4), 1203–1259 (2014)

    Article  ADS  Google Scholar 

  30. Parthasarathy, K.R.: An Introduction to Quantum Stochastic Calculus. Birkhauser, Basel (1992)

    Book  Google Scholar 

  31. Berg-Sørensen, K., Flyvbjerg, H.: The colour of thermal noise in classical Brownian motion: a feasibility study of direct experimental observation. N. J. Phys. 7, 38 (2005)

    Article  Google Scholar 

  32. Kunita, H.: Itô’s stochastic calculus: its surprising power for applications. Stoch. Process. Appl. 120, 622–652 (2010)

    Article  MathSciNet  Google Scholar 

  33. Kupferman, R., Pavliotis, G.A., Stuart, A.M.: Itô versus Stratonovich white-noise limits for systems with inertia and colored multiplicative noise. Phys. Rev. E 70, 036120 (2004)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotsna Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R., Parthasarathy, H. & Singh, J. Quantum image restoration based on Hudson–Parthasarathy Schrodinger equation. Quantum Inf Process 18, 351 (2019). https://doi.org/10.1007/s11128-019-2466-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2466-4

Keywords

Navigation