Skip to main content
Log in

Multiphoton process in cavity QED photons for implementing a three-qubit quantum gate operation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Based on cavity QED of free atoms, we theoretically investigate the implementation of a three-qubit quantum phase gate in which the three qubits are represented by the photons in modes of the cavity. A single four-level atom in double-V type passing through the high-Q cavity is used to implement the gate. We apply the theory of multiphoton resonance and use two-level effective Hamiltonians to predict the proper values for detunings, coupling constants, and interaction times. By the use of both the density matrix approach and wave function method, the influence of the decoherence processes is theoretically and numerically analyzed. Further, we address the effects of deviation in detunings and coupling coefficients and find that the gate operation is substantially insensitive to such variations. Finally, we show that the proposed scheme here can be extended for the implementation of multiqubit quantum phase gates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O‘Brien, J .L.: Quantum computers. Nature 464, 45–53 (2010)

    ADS  Google Scholar 

  2. Browne, D., Bose, S., Mintert, F., Kim, M.S.: From quantum optics to quantum technologies. Prog. Quantum Electron. 54, 2–18 (2017)

    Google Scholar 

  3. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    MathSciNet  MATH  Google Scholar 

  4. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325–328 (1997)

    ADS  Google Scholar 

  5. Long, G.L.: Grover algorithm with zero theoretical failure rate. Phys. Rev. A 64(2), 022307 (2001)

    ADS  Google Scholar 

  6. Kempe, J., Bacon, D., DiVincenzo, D.P., Whaley, K.: Encoded university from a single physical interaction. Quantum Inf. Comput. 1(4), 33–55 (2001)

    MathSciNet  MATH  Google Scholar 

  7. Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74(20), 4091–4094 (1995)

    ADS  Google Scholar 

  8. Jonathan, A.J., Michele, M., Rasmus, H.H.: Implementation of a quantum search algorithm on a quantum computer. Nature 393, 344–346 (1998)

    ADS  Google Scholar 

  9. Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79(1), 135–174 (2007)

    ADS  Google Scholar 

  10. Hanson, R., Awschalom, D.D.: Coherent manipulation of single spins in semiconductors. Nature 453, 1043–1049 (2008)

    ADS  Google Scholar 

  11. Raimond, J.M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73(3), 565–582 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Buluta, I., Ashhab, S., Nori, F.: Natural and artificial atoms for quantum computation. Rep. Prog. Phys. 74(10), 104401 (2011)

    ADS  Google Scholar 

  13. You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature 474(7353), 589–597 (2011)

    ADS  Google Scholar 

  14. Mabuchi, H., Doherty, A.C.: Cavity quantum electrodynamics: coherence in context. Science 298(5597), 1372–1377 (2002)

    ADS  Google Scholar 

  15. van Enk, S.J., Kimble, H.J., Mabuchi, H.: Quantum information processing in cavity-QED. Quantum Inf. Process. 3(1–5), 75–90 (2004)

    MATH  Google Scholar 

  16. Walther, H., Varcoe, B.T.H., Englert, B.G., Becker, T.: Cavity quantum electrodynamics. Rep. Prog. Phys. 69(5), 1325 (2006)

    ADS  Google Scholar 

  17. Miller, R., Northup, T.E., Birnbaum, K.M., Boca, A., Boozer, A.D., Kimble, H.J.: Trapped atoms in cavity QED: coupling quantized light and matter. J. Phys. B At. Mol. Opt. Phys. 38(9), S551 (2005)

    ADS  Google Scholar 

  18. Reiserer, A., Rempe, G.: Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87(4), 1379–1418 (2015)

    ADS  Google Scholar 

  19. Hacker, B., Welte, S., Rempe, G., Ritter, S.: A photon–photon quantum gate based on a single atom in an optical resonator. Nature 536, 193–196 (2016)

    ADS  Google Scholar 

  20. O‘Brien, J .L., Furusawa, A., Vŭcković, : Photonic quantum technologies. Nat. Photon. 3, 687–695 (2009)

    ADS  Google Scholar 

  21. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., fiShor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457–3467 (1995)

    ADS  Google Scholar 

  22. Liu, Y., Long, G.L., Sun, Y.: Analytic one-bit and CNOT gate constractions of general n-qubit controlled gates. Int. J. Quantum Inf. 6(3), 447–462 (2008)

    MATH  Google Scholar 

  23. Zubairy, M.S., Matsko, A.B., Scully, M.O.: Resonant enhancement of high-order optical nonlinearities based on atomic coherence. Phys. Rev. A 65, 043804 (2002)

    ADS  Google Scholar 

  24. Chiaverini, J., Leibfried, D., Schaetz, T., Barrett, M.D., Blakestad, R.B., Britton, J., Itano, W.M., Jost, J.D., Knill, E., Langer, C., Ozeri, R., Wineland, D.J.: Realization of quantum error correction. Nature 432, 602–605 (2004)

    ADS  Google Scholar 

  25. Chang, J.T., Zubairy, M.S.: Three-qubit phase gate based on cavity quantum electrodynamics. Phys. Rev. A 77(1), 012329 (2008)

    ADS  Google Scholar 

  26. Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54(1), 147 (1996)

    ADS  MathSciNet  Google Scholar 

  27. Zhang, J., Liu, W., Deng, Z., Lu, Z., Long, G.L.: Modularization of a multi-qubit controlled phase gate and its nuclear magnetic resonance implementation. J. Opt. B Quantum Semiclass. Opt. 7(1), 22 (2004)

    ADS  Google Scholar 

  28. Zou, X., Li, K., Guo, G.: Linear optical scheme for direct implementation of a nondestructive N-qubit controlled phase gate. Phys. Rev. A 74, 044305 (2006)

    ADS  Google Scholar 

  29. Wang, X., Sørensen, A., Mølmer, K.: Multibit gates for quantum computing. Phys. Rev. Lett. 86(17), 3907–3910 (2001)

    ADS  Google Scholar 

  30. Yang, C.-P., Zheng, S.-B., Nori, F.: Multiqubit tunable phase gate of one qubit simultaneously controlling \(n\) qubits in a cavity. Phys. Rev. A 82(6), 062326 (2010)

    ADS  Google Scholar 

  31. Yang, C.-P., Liu, Y.-X., Nori, F.: Phase gate of one qubit simultaneously controlling \(n\) qubits in a cavity. Phys. Rev. A 81(6), 062323 (2010)

    ADS  Google Scholar 

  32. Ye, B., Zheng, Z.-F., Yang, C.-P.: Multiplex-controlled phase gate with qubits distributed in a multicavity system. Phys. Rev. A 97(6), 062336 (2018)

    ADS  Google Scholar 

  33. Fan, Y.-J., Zheng, Z.-F., Zhang, Y., Lu, D.-M., Yang, C.-P.: One-step implementation of a multi-target-qubit controlled phase gate with cat-state qubits in circuit QED. Front. Phys. 14(2), 21602 (2019)

    Google Scholar 

  34. Shore, B.W.: Two-level behavior of coherent excitation of multilevel systems. Phys. Rev. A 24(3), 1413–1418 (1981)

    ADS  Google Scholar 

  35. Everitt, M.S., Garraway, B.M.: Multiphoton resonances for all-optical quantum logic with multiple cavities. Phys. Rev. A 90(1), 012335 (2014)

    ADS  Google Scholar 

  36. Alqahtani, M.M.: Quantum phase gate based on multiphoton process in multimode cavity QED. Quantum Inf. Process. 17(9). https://doi.org/10.1007/s11128-018-1979-6

  37. Liu, Y.-X., You, J.Q., Wei, L.F., Sun, C.P., Nori, F.: Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit. Phys. Rev. Lett. 95(8), 087001 (2005)

    ADS  Google Scholar 

  38. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  39. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48(2), 119–130 (1976)

    ADS  MathSciNet  MATH  Google Scholar 

  40. Kuhr, S., Gleyzes, S., Guerlin, C., Bernu, J., Hoff, U.B., Deléglise, S., Osnaghi, S., Brune, M., Raimond, J.M., Haroche, S., Jacques, E., Bosland, P., Visentin, B.: Ultrahigh finesse Fabry–Pérot superconducting resonator. Appl. Phys. Lett. 90, 164101 (2007)

    ADS  Google Scholar 

  41. Dalibard, J., Castin, Y., Mølmer, K.: Wave-function approach to dissipative processes in quantum optics. Phys. Rev. Lett. 68(5), 580–583 (1992)

    ADS  Google Scholar 

  42. Kollár, A.J., Papageorge, A.T., Vaidya, V.D., Guo, Y., Keeling, J., Lev, B.L.: Supermode-density-wave-polariton condensation with a Bose–Einstein condensate in a multimode cavity. Nat. Commun. 8(14386), 17 (2017)

    Google Scholar 

  43. Hamsen, C., Tolazzi, K.N., Wilk, T., Rempe, G.: Strong coupling between photons of two light fields mediated by one atom. Nat. Phys. 14, 885–889 (2018)

    Google Scholar 

Download references

Acknowledgements

The author would like to thank F. Maiz and M. Tohari for helpful discussions and comments on the manuscript. This work is supported by Scientific Research Deanship (SRD) at King Khalid University (KKU), Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moteb M. Alqahtani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alqahtani, M.M. Multiphoton process in cavity QED photons for implementing a three-qubit quantum gate operation. Quantum Inf Process 19, 12 (2020). https://doi.org/10.1007/s11128-019-2498-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2498-9

Keywords

Navigation