Skip to main content
Log in

Reversible storage and manipulation of light pulses with orbital angular momentum

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a scheme to realize the storage and retrieval of high-dimensional signal field with orbital angular momentum (OAM) in a double-\(\Lambda \) system of cold atoms. By employing two counter-propagating controlling fields, we show that the system exists two shape-preserving dark-state polaritons, which propagate in the opposite direction. We demonstrate that stationary light pulses with OAMs can be generated when both the controlling fields are switched on for retrieving the stored signal field from the atomic spin coherence, and the signal fields with OAMs can be manipulated coherently and all-optically through the active operation of the controlling fields in direction and time. The proposed scheme can easily be extended to the reversible storage and manipulation of multiple signal fields with OAMs. Our work is promising for practical application of information processing with large capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Molina-Terriza, G., Torres, J.P., Torner, L.: Twisted photons. Nat. Phys. 3, 305 (2007)

    Google Scholar 

  2. Gibson, G., Courtial, J., Padgett, M.J., Vasnetsov, M., Pas’ko, V., Barnett, S.M., Franke-Arnold, S.: Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express 12(22), 5448 (2004)

    ADS  Google Scholar 

  3. Djordjevic, I.B.: Deep-space and near-Earth optical communications by coded orbital angular momentum (OAM) modulation. Opt. Express 19, 14277 (2011)

    ADS  Google Scholar 

  4. Chou, C.W., de Riedmatten, H., Felinto, D., Polyakov, S.V., van Enk, S.J., Kimble, H.J.: Measurement-induced entanglement for excitation stored in remote atomic ensembles. Nature 438, 828 (2005)

    ADS  Google Scholar 

  5. Moehring, D.L., Maunz, P., Olmschenk, S., Younge, K.C., Matsukevich, D.N., Duan, L.M., Monroe, C.: Entanglement of single-atom quantum bits at a distance. Nature 449, 68 (2007)

    ADS  Google Scholar 

  6. Choi, K.S., Deng, H., Laurat, J., Kimble, H.J.: Mapping photonic entanglement into and out of a quantum memory. Nature 452, 67 (2008)

    ADS  Google Scholar 

  7. Saglamyurek, E., Sinclair, N., Jin, J., Slater, J.A., Oblak, D., Bussières, F., George, M., Ricken, R., Sohler, W., Tittel, W.: Broadband waveguide quantum memory for entangled photons. Nature 469, 512 (2011)

    ADS  Google Scholar 

  8. Mair, A., Vaziri, A., Weihs, G., Zeilinger, A.: Entanglement of the orbital angular momentum states of photons. Nature 412, 313 (2001)

    ADS  Google Scholar 

  9. Leach, J., Jack, B., Romero, J., Jha, A.K., Yao, A.M., Franke-Arnold, S., Ireland, D.G., Boyd, R.W., Barnett, S.M., Padgett, M.J.: Quantum correlations in optical angle-orbital angular momentum variables. Science 329, 662 (2010)

    ADS  Google Scholar 

  10. Allen, L., Beijersbergen, M.W., Spreeuw, R.J.C., Woerdman, J.P.: Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185 (1992)

    ADS  Google Scholar 

  11. Bechmann-Pasquinucci, H., Tittel, W.: Quantum cryptography using larger alphabets. Phys. Rev. A 61, 062308 (2000)

    ADS  MathSciNet  Google Scholar 

  12. Tabosa, J.W.R., Petrov, D.V.: Optical pumping of orbital angular momentum of light in cold cesium atoms. Phys. Rev. Lett. 83, 4967 (1999)

    ADS  Google Scholar 

  13. Barreiro, S., Tabosa, J.W.R.: Generation of light carrying orbital angular momentum via induced coherence grating in cold atoms. Phys. Rev. Lett. 90, 133001 (2003)

    ADS  Google Scholar 

  14. Jiang, W., Chen, Q.F., Zhang, Y.S., Guo, G.C.: Computation of topological charges of optical vortices via nondegenerate four-wave mixing. Phys. Rev. A 74, 043811 (2006)

    ADS  Google Scholar 

  15. Akamatsu, D., Kozuma, M.: Coherent transfer of orbital angular momentum from an atomic system to a light field. Phys. Rev. A 67, 023803 (2003)

    ADS  Google Scholar 

  16. Barreiro, S., Tabosa, J.W.R., Failache, H., Lezama, A.: Spectroscopic observation of the rotational Doppler effect. Phys. Rev. Lett. 97, 113601 (2006)

    ADS  Google Scholar 

  17. Shuker, M., Firstenberg, O., Pugatch, R., Ron, A., Davidson, N.: Storing images in warm atomic vapor. Phys. Rev. Lett. 100, 223601 (2008)

    ADS  Google Scholar 

  18. Vudyasetu, P.K., Camacho, R.M., Howell, J.C.: Storage and retrieval of multimode transverse images in hot atomic rubidium vapor. Phys. Rev. Lett. 100, 123903 (2008)

    ADS  Google Scholar 

  19. Ding, D.S., Wu, J.H., Zhou, Z.Y., Shi, B.S., Zou, X.B., Guo, G.C.: Multiple image storage and frequency conversion in a cold atomic ensemble. Phys. Rev. A 87, 053830 (2013)

    ADS  Google Scholar 

  20. Heinze, G., Rudolf, A., Beil, F., Halfmann, T.: Storage of images in atomic coherences in a rare-earth-ion-doped solid. Phys. Rev. A 81, 011401(R) (2010)

    ADS  Google Scholar 

  21. Nicolas, A., Veissier, L., Giner, L., Giacobino, E., Maxein, D., Laurat, J.: A quantum memory for orbital angular momentum photonic qubits. Nat. Photonics 8, 234 (2013)

    ADS  Google Scholar 

  22. Afzelius, M., Simon, C., de Riedmatten, H., Gisin, N.: Multimode quantum memory based on atomic frequency combs. Phys. Rev. A 79, 052329 (2009)

    ADS  Google Scholar 

  23. Bonarota, M., Le Gouët, J.L., Chanelière, T.: Highly multimode storage in a crystal. New J. Phys. 13, 013013 (2011)

    ADS  Google Scholar 

  24. Hosseini, M., Sparkes, B.M., Campbell, G., Lam, P.K., Buchler, B.C.: High efficiency coherent optical memory with warm rubidium vapour. Nat. Commun. 2, 174 (2011)

    ADS  Google Scholar 

  25. Higginbottom, D.B., Sparkes, B.M., Rancic, M., Pinel, O., Hosseini, M., Lam, P.K., Buchler, B.C.: Spatial-mode storage in a gradient-echo memory. Phys. Rev. A 86, 023801 (2012)

    ADS  Google Scholar 

  26. Glorieux, Q., Clark, J.B., Marino, A.M., Zhou, Z., Lett, P.D.: Temporally multiplexed storage of images in a gradient echo memory. Opt. Express 20, 12350 (2012)

    ADS  Google Scholar 

  27. Ding, D.S., Zhou, Z.Y., Shi, B.S., Guo, G.C.: Single-photon-level quantum image memory based on cold atomic ensembles. Nat. Commun. 4, 2527 (2013)

    ADS  Google Scholar 

  28. Ding, D.S., Zhang, W., Zhou, Z.Y., Shi, S., Xiang, G.Y., Wang, X.S., Jiang, Y.K., Shi, B.S., Guo, G.C.: Quantum storage of orbital angular momentum entanglement in an atomic ensemble. Phys. Rev. Lett. 114(5), 050502 (2015)

    ADS  Google Scholar 

  29. André, A., Lukin, M.D.: Manipulating light pulses via dynamically controlled photonic band gap. Phys. Rev. Lett. 89, 143602 (2002)

    ADS  Google Scholar 

  30. Bajcsy, M., Zibrov, A.S., Lukin, M.D.: Stationary pulses of light in an atomic medium. Nature 426, 638 (2003)

    ADS  Google Scholar 

  31. André, A., Bajcsy, M., Zibrov, A.S., Lukin, M.D.: Nonlinear optics with stationary pulses of light. Phys. Rev. Lett. 94, 063902 (2005)

    ADS  Google Scholar 

  32. Lin, Y.W., Liao, W.T., Peters, T., Chou, H.C., Wang, J.S., Cho, H.W., Kuan, P.C., Yu, I.A.: Stationary light pulses in cold atomic media and without bragg gratings. Phys. Rev. Lett. 102, 213601 (2009)

    ADS  Google Scholar 

  33. Moiseev, S.A., Sidorova, A.I., Ham, B.S.: Stationary and quasistationary light pulses in three-level cold atomic systems. Phys. Rev. A 89, 043802 (2014)

    ADS  Google Scholar 

  34. Zhang, X.J., Wang, H.H., Wang, L., Wan, R.G., Kou, J., Fan, Y.F., Zhang, B., Gao, J.Y.: Stationary light pulse in solids with long-lived spin coherence. Phys. Rev. A 83, 063804 (2011)

    ADS  Google Scholar 

  35. Nikoghosyan, G., Fleischhauer, M.: Stationary light in cold-atomic gases. Phys. Rev. A 80, 013818 (2009)

    ADS  Google Scholar 

  36. Xue, Y., Ham, B.S.: Investigation of temporal pulse splitting in a three-level cold-atom ensemble. Phys. Rev. A 78, 053830 (2008)

    ADS  Google Scholar 

  37. Bao, Q.Q., Zhang, X.H., Gao, J.Y., Zhang, Y., Cui, C.L., Wu, J.H.: Coherent generation and dynamic manipulation of double stationary light pulses in a five-level double-tripod system of cold atoms. Phys. Rev. A 84, 063812 (2011)

    ADS  Google Scholar 

  38. Zhang, X.J., Wang, H.H., Liu, C.Z., Han, X.W., Fan, C.B., Wu, J.H., Gao, J.Y.: Direct conversion of slow light into a stationary light pulse. Phys. Rev. A 86, 023821 (2012)

    ADS  Google Scholar 

  39. Hansen, K.R., Molmer, K.: Trapping of light pulses in ensembles of stationary \(\varLambda \) atoms. Phys. Rev. A 75, 053802 (2007)

    ADS  Google Scholar 

  40. Zimmer, F.E., Andre, A., Lukin, M.D., Fleischhauer, M.: Coherent control of stationary light pulses. Opt. Commun. 264, 441 (2006)

    ADS  Google Scholar 

  41. Zhang, Y., Zhang, Y., Zhang, X.H., Yu, M., Cui, C.L., Wu, J.H.: Efficient generation and control of robust stationary light signals in a double-\(\varLambda \) system of cold atoms. Phys. Lett. A 376, 656 (2012)

    ADS  Google Scholar 

  42. Moiseev, S.A., Ham, B.S.: Generation of entangled lights with temporally reversed photon wave packets. Phys. Rev. A 71, 053802 (2005)

    ADS  Google Scholar 

  43. Moiseev, S.A., Ham, B.S.: Quantum manipulation of two-color stationary light: quantum wavelength conversion. Phys. Rev. A 73, 033812 (2006)

    ADS  Google Scholar 

  44. Wu, J.H., Artoni, M., La Rocca, G.C.: Decay of stationary light pulses in ultracold atoms. Phys. Rev. A 81, 033822 (2010)

    ADS  Google Scholar 

  45. Fleischhauer, M., Lukin, M.D.: Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 84, 5094 (2000)

    ADS  Google Scholar 

  46. Karpa, L., Vewinger, F., Weitz, M.: Resonance beating of light stored using atomic spinor polaritons. Phys. Rev. Lett. 101, 170406 (2008)

    ADS  Google Scholar 

  47. Andrews, D.L., Babiker, M.: The Angular Momentum of Light. Cambridge University, Cambridge (2013)

    Google Scholar 

  48. Moos, M., Höning, M., Unanyan, R., Fleischhauer, M.: Many-body physics of Rydberg dark-state polaritons in the strongly interacting regime. Phys. Rev. A 92, 053846 (2015)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is subsidized by National Natural Science Foundation of China, Project Nos. 11604174, 61772295 and 11547035 and the Natural Science Foundation of Shandong Province, Project Nos. ZR2014AP006 and ZR2016FB09.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tianhui Qiu or Min Xie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, T., Li, H., Xie, M. et al. Reversible storage and manipulation of light pulses with orbital angular momentum. Quantum Inf Process 19, 52 (2020). https://doi.org/10.1007/s11128-019-2544-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2544-7

Keywords

Navigation