Skip to main content
Log in

SWAP gate on two modes of an optical cavity mediated by a laser-dressed V-type atom

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A laser-dressed V-type atom trapped in a two-mode optical cavity is investigated, which induces a SWAP gate on the two modes of the cavity. Two laser fields are imposed to interact with the atom dispersively, which leads to an effective interaction between two atomic excited states. The state of the atom prepared initially in the ground state keeps invariant, but the photon exchange between the two cavity modes occurs. Compared with the schemes (Lin et al. in Phys Rev A 77:064301, 2008 and Yan et al. in Quantum Inf Process 17:71, 2018) that use \(\nabla \)-type atoms, the present scheme is more practical, because usually the \(\nabla \)-type atom may be hardly obtained due to the dipole transition selection rule. In addition, the robustness of the SWAP gate against the pulse control error is strengthened by using time-dependent shaped pulses. The effect of the atomic spontaneous radiation and the photon loss is discussed by means of the numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. DiVincenzo, D.P.: Two-bit gates are universal for quantum computation. Phys. Rev. A 51, 1015–1022 (1995)

    ADS  Google Scholar 

  2. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995)

    ADS  Google Scholar 

  3. Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995)

    ADS  Google Scholar 

  4. Duan, L.M., Cirac, J.I., Zoller, P.: Geometric manipulation of trapped ions for quantum computation. Science 292, 1695–1697 (2001)

    ADS  Google Scholar 

  5. Barenco, A., Deutsch, D., Ekert, A., Jozsa, R.: Conditional quantum dynamics and logic gates. Phys. Rev. Lett. 74, 4083–4086 (1995)

    ADS  Google Scholar 

  6. Sleator, T., Weinfurter, H.: Realizable universal quantum logic gates. Phys. Rev. Lett. 74, 4087–4090 (1995)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Wu, J.L., Ji, X., Zhang, S.: Dressed-state scheme for a fast cnot gate. Quantum Inf. Process. 16, 294 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  8. Gershenfeld, N.A., Chuang, I.L.: Bulk spin-resonance quantum computation. Science 275, 350–356 (1997)

    MathSciNet  MATH  Google Scholar 

  9. Feng, G., Xu, G., Long, G.: Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110, 190501 (2013)

    ADS  Google Scholar 

  10. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)

    ADS  Google Scholar 

  11. Bai, C.H., Wang, D.Y., Hu, S., Cui, W.X., Jiang, X.X., Wang, H.F.: Scheme for implementing multitarget qubit controlled-NOT gate of photons and controlled-phase gate of electron spins via quantum dot-microcavity coupled system. Quantum Inf. Process. 15, 1485–1498 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Kang, Y.H., Xia, Y., Lu, P.M.: Two-photon phase gate with linear optical elements and atom-cavity system. Quantum Inf. Process. 15, 4521–4535 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Brune, M., Schmidt-Kaler, F., Maali, A., Dreyer, J., Hagley, E., Raimond, J.M., Haroche, S.: Quantum Rabi oscillation: a direct test of field quantization in a cavity. Phys. Rev. Lett. 76, 1800–1803 (1996)

    ADS  MATH  Google Scholar 

  14. Yoshie, T., Scherer, A., Hendrickson, J., Khitrova, G., Gibbs, H.M., Rupper, G., Ell, C., Shchekin, O.B., Deppe, D.G.: Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004)

    ADS  Google Scholar 

  15. Birnbaum, K.M., Boca, A., Miller, R., Boozer, A.D., Northup, T.E., Kimble, H.J.: Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005)

    ADS  Google Scholar 

  16. Imamoglu, A., Schmidt, H., Woods, G., Deutsch, M.: Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 79, 1467–1470 (1997)

    ADS  Google Scholar 

  17. Snijders, H.J., Frey, J.A., Norman, J., Flayac, H., Savona, V., Gossard, A.C., Bowers, J.E., van Exter, M.P., Bouwmeester, D., Loffler, W.: Observation of the unconventional photon blockade. Phys. Rev. Lett. 121, 043601 (2018)

    ADS  Google Scholar 

  18. Faraon, A., Fushman, I., Englund, D., Stoltz, N., Petroff, P., Vuckovic, J.: Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nat. Phys. 4, 859–863 (2008)

    Google Scholar 

  19. Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392–2395 (2000)

    ADS  Google Scholar 

  20. Sørensen, A.S., Mølmer, K.: Measurement induced entanglement and quantum computation with atoms in optical cavities. Phys. Rev. Lett. 91, 097905 (2003)

    ADS  Google Scholar 

  21. Smith, W.P., Reiner, J.E., Orozco, L.A., Kuhr, S., Wiseman, H.M.: Capture and release of a conditional state of a cavity QED system by quantum feedback. Phys. Rev. Lett. 89, 133601 (2002)

    ADS  Google Scholar 

  22. Yang, Z.B., Zhang, B., Zheng, S.B.: Quantum state engineering by superpositions of coherent states along a straight line with a single atomic state measurement. Opt. Commun. 283, 2872–2875 (2010)

    ADS  Google Scholar 

  23. Xiao, Y.F., Lin, X.M., Gao, J., Yang, Y., Han, Z.F., Guo, G.C.: Realizing quantum controlled phase flip through cavity QED. Phys. Rev. A 70, 042314 (2004)

    ADS  Google Scholar 

  24. García-Maraver, R., Corbalán, R., Eckert, K., Rebić, S., Artoni, M., Mompart, J.: Cavity QED quantum phase gates for a single longitudinal mode of the intracavity field. Phys. Rev. A 70, 062324 (2004)

    ADS  Google Scholar 

  25. Yavuz, D.D.: Single photon swap gate using electromagnetically induced transparency. Phys. Rev. A 71, 053816 (2005)

    ADS  Google Scholar 

  26. Duan, L.M., Wang, B., Kimble, H.J.: Robust quantum gates on neutral atoms with cavity assisted photon scattering. Phys. Rev. A 72, 032333 (2005)

    ADS  Google Scholar 

  27. Lin, X.M., Zhou, Z.W., Ye, M.Y., Xiao, Y.F., Guo, G.C.: One-step implementation of a multiqubit controlled-phase-flip gate. Phys. Rev. A 73, 012323 (2006)

    ADS  Google Scholar 

  28. Alqahtani, M.M.: Quantum phase gate based on multiphoton process in multimode cavity QED. Quantum Inf. Process. 17, 211 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  29. van Enk, S.J., Kimble, H.J., Mabuchi, H.: Quantum information processing in cavity QED. Quantum Inf. Process. 3, 75–90 (2004)

    MATH  Google Scholar 

  30. Qiu, L.: Quantum information processing through a genuine five-qubit entangled state in cavity QED. Quantum Inf. Process. 9, 643–662 (2010)

    MathSciNet  MATH  Google Scholar 

  31. Lukin, M., Fleischhauer, M., Imamoğlu, A.: Quantum information processing based on cavity QED with mesoscopic systems. In: Carmichael, H.J., Glauber, R.J., Scully, M.O. (eds.) Directions in Quantum Optics, pp. 193–203. Springer, Berlin (2001)

    Google Scholar 

  32. Lin, G.W., Zou, X.B., Ye, M.Y., Lin, X.M., Guo, G.C.: Quantum swap gate in an optical cavity with an atomic cloud. Phys. Rev. A 77, 064301 (2008)

    ADS  Google Scholar 

  33. Yan, G., Qiao, H., Lu, H.: Quantum iSWAP gate in optical cavities with a cyclic three-level system. Quantum Inf. Process. 17, 71 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Molouki, L., Yahyavi, M., Esmaili, P., Talebian, E.: Generation of SWAP gate between two remote cavities via an optical fiber by adiabatic passage. Eur. Phys. J. Plus 127, 134 (2012)

    Google Scholar 

  35. Tan, T.R., Gaebler, J.P., Lin, Y., Wan, Y., Bowler, R., Leibfried, D., Wineland, D.J.: Multi-element logic gates for trapped-ion qubits. Nature 528, 380 (2015)

    ADS  Google Scholar 

  36. Liang, Y., Ji, X., Wang, H.F., Zhang, S.: Deterministic SWAP gate using shortcuts to adiabatic passage. Laser Phys. Lett. 12, 115201 (2015)

    ADS  Google Scholar 

  37. Luo, M.X., Li, H.R., Wang, X.: Distributed atomic quantum information processing via optical fibers. Sci. Rep. 7, 1234 (2017)

    ADS  Google Scholar 

  38. Li, T., Miranowicz, A., Hu, X., Xia, K., Nori, F.: Quantum memory and gates using a \(\Lambda \)-type quantum emitter coupled to a chiral waveguide. Phys. Rev. A 97, 062318 (2018)

    ADS  Google Scholar 

  39. Bechler, O., Borne, A., Rosenblum, S., Guendelman, G., Mor, O.E., Netser, M., Ohana, T., Aqua, Z., Drucker, N., Finkelstein, R., Lovsky, Y., Bruch, R., Gurovich, D., Shafir, E., Dayan, B.: A passive photon-atom qubit swap operation. Nat. Phys. 14, 996 (2018)

    Google Scholar 

  40. Chauhan, A.K., Biswas, A.: Atomic swap gate, driven by position fluctuations, in dispersive cavity optomechanics. J. Mod. Opt. 66, 438–447 (2019)

    ADS  Google Scholar 

  41. Zhang, C.L., Lu, M., Luo, C.L., Liu, W.W.: One-step implementation of a deterministic SWAP gate via a shortcut to adiabatic passage. Laser Phys. Lett. 16, 025203 (2019)

    ADS  Google Scholar 

  42. Wu, J.L., Su, S.L.: Auxiliary-qubit-driving-induced entanglement and logic gate. Europhys. Lett. 126, 30001 (2019)

    Google Scholar 

  43. Wybourne, B.G.: Classical Groups for Physicists. Wiley, New York (1974)

    MATH  Google Scholar 

  44. Wilk, T., Simon, C., Kuhn, A., Remp, G.: Single-atom single-photon quantum interface. Science 317, 488 (2007)

    ADS  Google Scholar 

  45. Weber, B., Specht, H.P., Müller, T., Bochmann, J., Mücke, M., Moehring, D.L., Rempe, G.: Photon-photon entanglement with a single trapped atom. Phys. Rev. Lett. 102, 050301 (2009)

    Google Scholar 

  46. James, D., Jerke, J.: Effective Hamiltonian theory and its applications in quantum information. Can. J. Phys. 85, 625–632 (2007)

    ADS  Google Scholar 

  47. Glaser, S.J., Boscain, U., Calarco, T., Koch, C.P., Köckenberger, W., Kosloff, R., Kuprov, I., Luy, B., Schirmer, S., Schulte-Herbrüggen, T., Sugny, D., Wilhelm, F.K.: Training schrödinger’s cat: quantum optimal control. Eur. Phys. J. D 69, 279 (2015)

    ADS  Google Scholar 

  48. Kang, Y.H., Chen, Y.H., Shi, Z.C., Huang, B.H., Song, J., Xia, Y.: Pulse design for multilevel systems by utilizing lie transforms. Phys. Rev. A 97, 033407 (2018)

    ADS  Google Scholar 

  49. Wu, J.L., Su, S.L.: Universal speeded-up adiabatic geometric quantum computation in three-level systems via counterdiabatic driving. J. Phys. A Math. Theor. 52, 335301 (2019)

    ADS  MathSciNet  Google Scholar 

  50. Medina, I., Semião, F.L.: Pulse engineering for population control under dephasing and dissipation. Phys. Rev. A 100, 012103 (2019)

    ADS  Google Scholar 

  51. Liu, B.J., Song, X.K., Xue, Z.Y., Wang, X., Yung, M.H.: Plug-and-play approach to nonadiabatic geometric quantum gates. Phys. Rev. Lett. 123, 100501 (2019)

    ADS  Google Scholar 

  52. Zubairy, M.S., Kim, M., Scully, M.O.: Cavity-QED-based quantum phase gate. Phys. Rev. A 68, 033820 (2003)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 11805295.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuehua Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Ding, X. & Ge, X. SWAP gate on two modes of an optical cavity mediated by a laser-dressed V-type atom. Quantum Inf Process 19, 59 (2020). https://doi.org/10.1007/s11128-019-2556-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2556-3

Keywords

Navigation