Skip to main content
Log in

Quantum (t, n) threshold group signature based on Bell state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum group signature is an important branch of quantum signature. Most of the existing quantum group signature schemes require that all the signatories must be present to generate a valid signature, and this property may limit their application in practice. In this paper, we will propose a quantum (t, n) threshold group signature scheme. In our scheme, n signatories compose a group, and any t out of these n signatories can generate a valid signature on behalf of the group. The t signatories use the quantum-controlled-not operations to expand the quantum message into t-particle entangled states, and then use the entanglement swapping to transmit the quantum message to the receiver. The receiver performs the single-particle measurements and unitary operations to recover the initial quantum message, and then verifies the signature with the help of the arbitrator. Compared to the existing quantum group signature schemes, our (t, n) threshold scheme will be more flexible in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rivest, R.L., Shamir, A., Aldleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21, 120–126 (1978)

    Article  MathSciNet  Google Scholar 

  2. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41, 303–332 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  3. Gennaro, R., Rabin, T., Krawczyk, H.: RSA-based undeniable signatures. J. Cryptol. 13, 397–416 (2000)

    Article  MathSciNet  Google Scholar 

  4. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algorithm (ECDSA). Int. J. Inf. Secur. 1, 36–63 (2001)

    Article  Google Scholar 

  5. Buhrman, H., Cleve, R., Watrous, J., Wolf, R.D.: Quantum fingerprinting. Phys. Rev. Lett. 87, 167902 (2001)

    Article  ADS  Google Scholar 

  6. Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, 042312 (2002)

    Article  ADS  Google Scholar 

  7. Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79, 054307 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  8. Li, H.R., Luo, M.X., Peng, D.Y., Wang, X.J.: An arbitrated quantum signature scheme without entanglement. Commun. Theor. Phys. 68, 317–322 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  9. Yang, Y.G., Lei, H., Liu, Z.C., Zhou, Y.H., Shi, W.M.: Arbitrated quantum signature scheme based on cluster states. Quantum Inf. Process. 15, 2487–2497 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  10. Li, K., Shang, T., Liu, J.W.: Continuous-variable quantum homomorphic signature. Quantum Inf. Process. 16, 246 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  11. Li, W., Shi, R.H., Guo, Y.: Blind quantum signature with blind quantum computation. Int. J. Theor. Phys. 56, 1108–1115 (2017)

    Article  MathSciNet  Google Scholar 

  12. Zhang, M.H., Li, H.F.: Fault-tolerant quantum blind signature protocols against collective noise. Quantum Inf. Process. 15, 4283–4301 (2016)

    Article  ADS  Google Scholar 

  13. Shang, T., Lei, Q., Liu, J.W.: Quantum random oracle model for quantum digital signature. Phys. Rev. A 94, 042314 (2016)

    Article  ADS  Google Scholar 

  14. Puthoor, I.V., Amiri, R., Wallden, P., Curty, M., Andersson, E.: Measurement-device-independent quantum digital signatures. Phys. Rev. A 94, 022328 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  15. Amiri, R., Wallden, P., Kent, A., Andersson, E.: Secure quantum signatures using insecure quantum channels. Phys. Rev. A 93, 032325 (2016)

    Article  ADS  Google Scholar 

  16. Yin, H.L., Fu, Y., Liu, H., et al.: Experimental quantum digital signature over 102 km. Phys. Rev. A 95, 032334 (2017)

    Article  ADS  Google Scholar 

  17. Roberts, G.L., Lucamarini, M., Yuan, Z.L., et al.: Experimental measurement-device-independent quantum digital signatures. Nat. Commun. 8, 1098 (2017)

    Article  ADS  Google Scholar 

  18. Yang, Y.G., Wen, Q.Y.: Quantum threshold group signature. Sci. China Phys. Mech. Astron. 51, 1505–1514 (2008)

    Article  ADS  Google Scholar 

  19. Yang, Y.G., Wen, Q.Y.: Threshold proxy quantum signature scheme with threshold shared verification. Sci. China Phys. Mech. Astron. 51, 1079–1088 (2008)

    Article  ADS  Google Scholar 

  20. Shamir, A.: How to share a secret. Commun. ACM 11, 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  21. Shi, J.J., Shi, R.H., Guo, Y., Peng, X.Q., Lee, M.H., Park, D.S.: A (t, n)-threshold scheme of multi-party quantum group signature with irregular quantum Fourier transform. Int. J. Theor. Phys. 51, 1038–1049 (2012)

    Article  Google Scholar 

  22. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, pp. 175–179 (1984)

  23. Lo, H.K., Ma, X.F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    Article  ADS  Google Scholar 

  24. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  25. Hu, J.Y., Yu, B., Jing, M.Y., et al.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144 (2016)

    Article  Google Scholar 

  26. Boykin, P.O., Roychowdhury, V.: Optimal encryption of quantum bits. Phys. Rev. A 67, 042317 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study is supported by Natural Science Foundation of China (Grant No. 61602247) and Natural Science Foundation of Jiangsu Province (Grant No. BK20160840).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huawang Qin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, H., Tang, W.K.S. & Tso, R. Quantum (t, n) threshold group signature based on Bell state. Quantum Inf Process 19, 71 (2020). https://doi.org/10.1007/s11128-019-2567-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2567-0

Keywords

Navigation