Skip to main content
Log in

High-capacity (2,3) threshold quantum secret sharing based on asymmetric quantum lossy channels

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The main weakness of entanglement is its sensitiveness to the photon loss. In this paper, we exploit the different transmission losses of the free-space and optical fiber quantum channels, to develop a novel approach for (2,3) threshold quantum secret sharing (QSS) of classical information. To be exact, the Dealer Alice allocates W-state to three participants Bob, Charlie and David in terms of the asymmetric losses of their quantum channels, preventing any one participant from recovering the secret alone, but allowing any two of them to recover the secret. In such a way, Alice can flexibly choose the suitable degree of freedom to allocate the quantum shares with respect to the loss characteristics of different quantum channels. Our proposed scheme improves the information capacity from three bits to \((\log _{2} m+2)\) bits, where m denotes the dimension of orbital angular momentum, and improves the security and flexibility of quantum communication, confirming QSS as a realistic technology for safeguarding secret shares in transmission. This work opens a convenient and favorable way to perform QSS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  2. Greenberger, D.M., Horne, M.A., Zeilinger, A.: In: Kafatos, M. (ed.) Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, pp. 73-76. Kluwer, Dordrecht (1989)

  3. Fortescue, B., Gour, G.: Reducing the quantum communication cost of quantum secret sharing. IEEE Trans. Inf. Theory 58(10), 6659–6666 (2012)

    Article  MathSciNet  Google Scholar 

  4. Ahmadi, M., Wu, Y.D., Sanders, B.C.: Relativistic (2,3)-threshold quantum secret sharing. Phys. Rev. D 96(6), 065018 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  5. Lance, A.M., Symul, T., Bowen, W.P., Tyc, T., Sanders, B.C., Lam, P.K.: Continuous variable (2,3) threshold quantum secret sharing schemes. New J. Phys. 5(1), 4 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  6. Lai, H., Orgun, M.A., Xiao, J.H., Xue, L.Y., Pieprzyk, J.: Dynamic (2,3) Threshold quantum secret sharing of secure direct communication. Commun. Theor. Phys. 63, 459–465 (2015)

    Article  ADS  Google Scholar 

  7. Zhou, Y.Y., Yu, J., Yan, Z.H., Jia, X.J., Zhang, J., Xie, C.D., Peng, K.C.: Quantum secret sharing among four players using multipartite bound entanglement of an optical field. Phys. Rev. Lett. 121(15), 150502 (2018)

    Article  ADS  Google Scholar 

  8. Lai, H., Luo, M.X., Pieprzyk, J., Tao, L., Liu, Z.M., Orgun, M.A.: Large-capacity three-party quantum digital secret sharing using three particular matrices coding. Commun. Theor. Phys. 66(5), 501 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  9. Gaertner, S., Kurtsiefer, C., Bourennane, M., Weinfurter, H.: Experimental demonstration of four-party quantum secret sharing. Phys. Rev. Lett. 98, 020503 (2007)

    Article  ADS  Google Scholar 

  10. Lu, H., Zhang, Z., Chen, L.K., Li, Z.D., Liu, C., Li, L., Liu, N.L., Ma, X., Chen, Y.A., Pan, J.W.: Secret sharing of a quantum state. Phys. Rev. Lett. 117(3), 030501 (2016)

    Article  ADS  Google Scholar 

  11. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62(6), 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  12. Yamamoto, T., Tamaki, K., Koashi, M., Imoto, N.: Polarization-entangled W state using parametric down-conversion. Phys. Rev. A 66, 064301 (2002)

    Article  ADS  Google Scholar 

  13. Eibl, M., Kiesel, N., Bourennane, M., Kurtsiefer, C., Weinfurter, H.: Experimental realization of a three-qubit entangled W state. Phys. Rev. Lett. 92, 077901 (2004)

    Article  ADS  Google Scholar 

  14. Gorbachev, V.N., Trubilko, A.I.: On multiparticle W states, their implementations and application in the quantum informational problems. Laser Phys. Lett. 3, 59–70 (2006)

    Article  ADS  Google Scholar 

  15. Fan, R.H., Guo, B.H., Guo, J.J., Zhang, C.X., Zhang, W.J., Du, G.: Entangled W state of multi degree of freedom system based on orbital angular momentum. Acta Phys. Sin. 64(14), 140301 (2015)

    Google Scholar 

  16. Chen, L., She, W.: Spin-orbit-path hybrid Greenberger–Horne–Zeilinger entanglement and open-destination teleportation with multiple degrees of freedom. Phys. Rev. A 83(3), 032305 (2011)

    Article  ADS  Google Scholar 

  17. Gräfe, M., Heilmann, R., Perez-Leija, A., Keil, R., Dreisow, F., Heinrich, M., Moya-Cessa, H., Nolte, S., Christodoulides, D.N., Szameit, A.: On-chip generation of high-order single-photon W-states. Nat. Photon. 8(10), 791 (2014)

    Article  ADS  Google Scholar 

  18. Mikami, H., Li, Y., Kobayashi, T.: Generation of the four-photon W state and other multiphoton entangled states using parametric down-conversion. Phys. Rev. A 70(5), 052308 (2004)

    Article  ADS  Google Scholar 

  19. Tashima, T., Kitano, T., Ozdemir, K., Yamamoto, T., Koashi, M., Imoto, N.: Demonstration of local expansion toward large-scale entangled webs. Phys. Rev. Lett 105(21), 210503 (2010)

    Article  ADS  Google Scholar 

  20. Wang, X.L., Luo, Y.H., Huang, H.L., Chen, M.C., Su, Z.E., Liu, C., Zhang, J.: 18-qubit entanglement with six photons’ three degrees of freedom. Phys. Rev. Lett. 120(26), 260502 (2018)

    Article  ADS  Google Scholar 

  21. Chen, X.Y.: Determining separability with entanglement of formation and entanglement sudden death. Chin. Phys. Lett. 32(1), 010301 (2015)

    Article  ADS  Google Scholar 

  22. Semenov, A.A., Vogel, W.: Entanglement transfer through the turbulent atmosphere. Phys. Rev. A 81(2), 023835 (2010)

    Article  ADS  Google Scholar 

  23. Yang, Y., Xu, L.P., Yan, B., Zhang, H.Y., Shen, Y.H.: Performance optimization for quantum key distribution in lossy channel using entangled photons. Chin. Phys. B 26(11), 110305 (2017)

    Article  ADS  Google Scholar 

  24. Bohmann, M., Semenov, A.A., Sperling, J., Vogel, W.: Gaussian entanglement in the turbulent atmosphere. Phys. Rev. A 94(1), 010302 (2016)

    Article  ADS  Google Scholar 

  25. Aolita, L., Walborn, S.P.: Quantum communication without alignment using multiple-qubit single-photon states. Phys. Rev. Lett. 98(10), 100501 (2007)

    Article  ADS  Google Scholar 

  26. Paterson, C.: Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Phys. Rev. Lett. 94(15), 153901 (2005)

    Article  ADS  Google Scholar 

  27. Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)

    Article  ADS  Google Scholar 

  28. Bennett, C. H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (Bangalore, India), pp 175–179. IEEE, New York (1984)

Download references

Acknowledgements

Hong Lai has been supported by the National Natural Science Foundation of China (No. 61702427) and the Fundamental Research Funds for the Central Universities (XDJK2020B027), the Southwest University Research Fund (SWU1908043) the Chongqing innovation project (No. cx2018076). Ming-Xing Luo is supported by the National Natural Science Foundation of China (No. 61772437), Sichuan Youth Science & Technique Foundation (No. 2017JQ0048) and Fundamental Research Funds for the Central Universities (No. 2018GF07). Josef Pieprzyk has been supported by the Australian Research Council Grant DP180102199.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Lai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, H., Pieprzyk, J., Luo, MX. et al. High-capacity (2,3) threshold quantum secret sharing based on asymmetric quantum lossy channels. Quantum Inf Process 19, 157 (2020). https://doi.org/10.1007/s11128-020-02647-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02647-z

Keywords

Navigation