Skip to main content
Log in

Finite-key security analysis of the 1-decoy state QKD protocol with a leaky intensity modulator

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The finite-key security of the standard three-intensity decoy-state quantum key distribution (QKD) protocol in the presence of information leakage has been analyzed (Wang et al. in New J Phys 20:083027, 2018). On the other hand, the 1-decoy state QKD protocol has been proved to be able to achieve higher secret key rate than the three-intensity decoy-state QKD protocol in the finite-key regime by using only two different intensity settings (Davide et al. in Appl Phys Lett 112:171104, 2018). In this work, we analyze the finite-key security of the 1-decoy state QKD protocol with a leaky intensity modulator, which is used to generate the decoy state. In particular, we simulate the secret key rate under three practical cases of Trojan-horse attacks. Our simulation results demonstrate that the 1-decoy state QKD protocol can be secure over long distances within a reasonable time frame given that the intensity modulator is sufficiently isolated. By comparing the simulation results to those presented in Wang et al. (2018), we find that, as expected, the 1-decoy state QKD protocol is more robust against information leakage from the intensity modulator for all achievable distances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: International Conference on Computer System and Signal Processing, pp. 175–179. IEEE (1984)

  2. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009)

    Article  ADS  Google Scholar 

  3. Lo, H.-K., Curty, M., Tamaki, K.: Secure quantum key distribution. Nat. Photonics 8, 595 (2014)

    Article  ADS  Google Scholar 

  4. Liao, S.-K., et al.: Satellite-to-ground quantum key distribution. Nature 549, 43 (2017)

    Article  ADS  Google Scholar 

  5. Lucamarini, M., Choi, I., Ward, M.B., Dynes, J.F., Yuan, Z., Shields, A.J.: Practical security bounds against the Trojan-horse attack in quantum key distribution. Phys. Rev. X 5, 031030 (2015)

    Google Scholar 

  6. Tamaki, K., Curty, M., Lucamarini, M.: Decoy-state quantum key distribution with a leaky source. New J. Phys. 18, 065008 (2016)

    Article  ADS  Google Scholar 

  7. Wang, W., Tamaki, K., Curty, M.: Finite-key security analysis for quantum key distribution with leaky sources. New J. Phys. 20, 083027 (2018)

    Article  ADS  Google Scholar 

  8. Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)

    Article  ADS  Google Scholar 

  9. Lo, H.-K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    Article  ADS  Google Scholar 

  10. Wang, X.-B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)

    Article  ADS  Google Scholar 

  11. Zhao, Y., Qi, B., Ma, X., Lo, H.-K., Qian, L.: Experimental quantum key distribution with decoy states. Phys. Rev. Lett. 96, 070502 (2006)

    Article  ADS  Google Scholar 

  12. Peng, C.-Z., Zhang, J., Yang, D., Gao, W.-B., Ma, H.-X., Yin, H., Zeng, H.-P., Yang, T., Wang, X.-B., Pan, J.-W.: Experimental long-distance decoy-state quantum key distribution based on polarization encoding. Phys. Rev. Lett. 98, 010505 (2007)

    Article  ADS  Google Scholar 

  13. Schmitt-Manderbach, T., et al.: Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98, 010504 (2007)

    Article  ADS  Google Scholar 

  14. Yuan, Z., Sharpe, A., Shields, A.: Unconditionally secure one-way quantum key distribution using decoy pulses. Appl. Phys. Lett. 90, 011118 (2007)

    Article  ADS  Google Scholar 

  15. Rosenberg, D., Harrington, J.W., Rice, P.R., Hiskett, P.A., Peterson, C.G., Hughes, R.J., Lita, A.E., Nam, S.W., Nordholt, J.E.: Long-distance decoy-state quantum key distribution in optical fiber. Phys. Rev. Lett. 98, 010503 (2007)

    Article  ADS  Google Scholar 

  16. Liu, Y., et al.: Decoy-state quantum key distribution with polarized photons over 200 km. Opt. Express 18, 8587 (2010)

    Article  ADS  Google Scholar 

  17. Fröhlich, B., Lucamarini, M., Dynes, J.F., Comandar, L.C., Tam, W.W.-S., Plews, A., Sharpe, A.W., Yuan, Z., Shields, A.J.: Long-distance quantum key distribution secure against coherent attacks. Optica 4, 163 (2017)

    Article  ADS  Google Scholar 

  18. Davide, R., Baron, A., Grünenfelder, F., Martin, A., Zbinden, H.: Finite-key analysis for the 1-decoy state QKD protocol. Appl. Phys. Lett. 112, 171104 (2018)

    Article  ADS  Google Scholar 

  19. Mizutani, A., Curty, M., Lim, C.C.W., Imoto, N., Tamaki, K.: Finite-key security analysis of quantum key distribution with imperfect light sources. New J. Phys. 17, 093011 (2015)

    Article  ADS  Google Scholar 

  20. Nielsen, M.A., Chuang, I.L.: Quantum Information and Quantum Computation. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  21. Azuma, K.: Weighted sums of certain dependent random variables. Tohoku Math. J. 19, 357 (1967)

    Article  MathSciNet  Google Scholar 

  22. Lim, C.C.W., Curty, M., Walenta, N., Xu, F., Zbinden, H.: Concise security bounds for practical decoy-state quantum key distribution. Phys. Rev. A 89, 022307 (2014)

    Article  ADS  Google Scholar 

  23. Serfling, R.J.: Probability inequalities for the sum in sampling without replacement. Ann. Stat. 2, 39 (1974)

    Article  MathSciNet  Google Scholar 

  24. Tomamichel, M., Lim, C.C.W., Gisin, N., Renner, R.: Tight finite-key analysis for quantum cryptography. Nat. Commun. 3, 634 (2012)

    Article  ADS  Google Scholar 

  25. Curty, M., Xu, F., Cui, W., Lim, C.C.W., Tamaki, K., Lo, H.-K.: Finite-key analysis for measurement-device-independent quantum key distribution. Nat. Commun. 5, 3732 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61701539, 61972413, 61901525) and the National Cryptography Development Fund (mmjj20180107, mmjj20180212). WLW and XDM contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weilong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Meng, X., Fei, Y. et al. Finite-key security analysis of the 1-decoy state QKD protocol with a leaky intensity modulator. Quantum Inf Process 19, 196 (2020). https://doi.org/10.1007/s11128-020-02694-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02694-6

Keywords

Navigation