Skip to main content
Log in

Locally maximally mixed states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Preparing the locally maximally mixed (LMM) states is a physically operational work. We investigate the set \(\mathcal{P}_d\) containing two-qudit LMM states. We show that the point with a canonical decomposition (CD) has either the unique or infinitely many CDs. Next we show that the point in \(\mathcal{P}_2\) has infinitely many CDs. Further we construct the necessary and sufficient condition by which the non-extreme point of rank two has the unique CD. We also show that the maximally correlated state of rank d is not an extreme point of \(\mathcal{P}_d\). As an application, we show that if the range of rank-three \(\rho \in \mathcal{P}_3\) is spanned by product vectors, then \(\rho \) is not an extreme point of \(\mathcal{P}_3\). Moreover, \(\rho \) is realizable by unitary channels as a method of constructing a family of two-qutrit LMM states. We also prove that Conjecture 1 in [C. King et al., J. Phys. A: Math. Theor 40, 7939 (2007)] holds for \(\rho \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Dong Yang and Yi Xin Chen: Mixture of multiple copies of maximally entangled states is quasipure. Phys. Rev. At. Mol. Opt. Phys. 69(2), 577–580 (2012)

    Google Scholar 

  2. Ishizaka, S., Hiroshima, T.: Maximally entangled mixed states under nonlocal unitary operations in two qubits. Phys. Rev. A 62(62), 578–592 (2000)

    Google Scholar 

  3. Kent, A.: Entangled mixed states and local purification. Phys. Rev. Lett. 81(14), 2839–2841 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Terhal, B.M., Vollbrecht, K.G.: Entanglement of formation for isotropic states. Phys. Rev. Lett. 85(12), 2625 (2000)

    ADS  Google Scholar 

  5. Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)

    ADS  MATH  Google Scholar 

  6. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Ekert, A.K.: Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  8. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Deng, F.G., Gui, L.L., Xiao, S.L.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68(4), 113–114 (2003)

    Google Scholar 

  10. Long, G.-L., Liu, X.-S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    ADS  Google Scholar 

  11. DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Thapliyal, A.V.: Evidence for bound entangled states with negative partial transpose. Phys. Rev. A 61, 062312 (2000)

    ADS  MathSciNet  Google Scholar 

  12. Chen, L., Djokovic, D.Z.: Distillability of non-positive-partial-transpose bipartite quantum states of rank four. Phys. Rev. A 94, 052318 (2016)

    ADS  Google Scholar 

  13. Kwiat, P.G., Barraza-Lopez, S., Stefanov, A., Gisin, N.: Experimental entanglement distillation and ’hidden’ non-locality. Nature 409(6823), 1014–7 (2001)

    ADS  Google Scholar 

  14. Sackett, C.A., Kielpinski, D., King, B.E., Langer, C., Meyer, V., Myatt, C.J., Rowe, M., Turchette, Q.A., Itano, W.M., Wineland, D.J.: Experimental entanglement of four particles. Nature 404(6775), 256 (2000)

    ADS  Google Scholar 

  15. Lin, C., Zhu, H., Wei, T.C.: Connections of geometric measure of entanglement of pure symmetric states to quantum state estimation. Phys. Rev. A 83(1), 99–104 (2011)

    Google Scholar 

  16. Facchi, P., Florio, G., Pascazio, S., Pepe, F.: Maximally multipartite entangled states. Phys.Rev. A 77(6), 060304 (2008)

    ADS  MathSciNet  Google Scholar 

  17. Flores, M.M., Galapon, E.A.: Mixtures of maximally entangled pure states. Ann. Phys. 372, 297–308 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Kimble, H.J.: The quantum internet. Nature 453(7198), 1023–1030 (2008)

    ADS  Google Scholar 

  19. Streltsov, A., Kampermann, H., Bruß, D.: Quantum cost for sending entanglement. Phys. Rev. Lett. 108(25), 250501 (2012)

    ADS  Google Scholar 

  20. Salavrakos, A., Augusiak, R., Tura, J., Wittek, P., Acin, A., Pironio, S.: Bell inequalities tailored to maximally entangled states. Phys. Rev. Lett. 119(4), 040402 (2017)

    ADS  MathSciNet  Google Scholar 

  21. Huang, Xuan-Lun., Gao, Jun., Jiao, Zhi-Qiang., Yan, Zeng-Quan., Zhang, Zhe-Yong., Chen, Dan-Yang., Zhang, Xi., Ji, Ling., Jin, Xian-Min.: Reconstruction of quantum channel via convex optimization. Science Bulletin, (2019)

  22. Mazziotti, D.A.: Variational minimization of atomic and molecular ground-state energies via the two-particle reduced density matrix. Phys. Rev. A 65(6), 062511 (2002)

    ADS  Google Scholar 

  23. Coleman, A.J.: Necessary conditions for n-representability of reduced density matrices. J. Math. Phys. 13(2), 214–222 (1972)

    ADS  MathSciNet  Google Scholar 

  24. Mazziotti, David A.: Structure of fermionic density matrices: complete n-representability conditions. Phys. Rev. Lett. 108(26), 263002 (2012)

    ADS  Google Scholar 

  25. King, C., Matysiak, D.: On the existence of locc-distinguishable bases in three-dimensional subspaces of bipartite 3 Ã n systems. J. Phys. A Math. Theor. 40(28), 7939 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  26. Horodecki, P.: Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232, 333 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Vianna, R.O., Doherty, A.C.: Distillability of werner states using entanglement witnesses and robust semidefinite programs. Phys. Rev. A 74, 052306 (2006)

    ADS  Google Scholar 

  28. Pawel Horodecki, Lukasz Rudnicki, and Karol Życzkowski. Five open problems in quantum information, (2020). arXiv:2002.03233v1

  29. Acin, A., Andrianov, A., Costa, L., Jane, E., Latorre, J.I., Tarrach, R.: Generalized schmidt decomposition and classification of three-quantum-bit states. Phys. Rev. Lett. 85, 1560–1563 (2000)

    ADS  Google Scholar 

  30. Chen, Lin: On the locally distinguishable three-dimensional subspace of bipartite systems. J. Phys. A Math. Theor. 51, 14 (2018)

    MathSciNet  Google Scholar 

  31. Chen, L., Djokovic, D.Z.: Distillability and ppt entanglement of low-rank quantum states. J. Phys. A Math. Theor. 44(28), 285303 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Kraus, B.: Local unitary equivalence and entanglement of multipartite pure states. Phys. Rev. A 82(3), 10467–10473 (2010)

    MathSciNet  MATH  Google Scholar 

  33. Kraus, B., Cirac, J.I.: Optimal creation of entanglement using a two-qubit gate. Phys. Rev. A 63(6), 21–22 (2000)

    Google Scholar 

  34. Chen, L., Li, Y.: Entanglement cost and entangling power of bipartite unitary and permutation operators. Phys. Rev. A 93, 042331 (2016)

    ADS  Google Scholar 

  35. Chen, L.: The convex set containing two-qutrit maximally entangled states. Quantum Inf. Process 18(2), 46 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Hughston, L.P., Jozsa, R., Wootters, W.K.: A complete classification of quantum ensembles having a given density matrix. Phys. Lett. A 183(1), 14–18 (1993)

    ADS  MathSciNet  Google Scholar 

  37. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Found. Phys. Lett. 14(3), 199–212 (1997)

    Google Scholar 

  38. Vidal, G., Dür, W., Cirac, J.I.: Entanglement cost of bipartite mixed states. Phys. Rev. Lett. 89(2), 027901 (2002)

    ADS  Google Scholar 

  39. Mendl, Christian B., Wolf, Michael M.: Unital quantum channels—convex structure and revivals of Birkhoff’s theorem. Commun. Math. Phys. 289(3), 1057–1086 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  40. Hosur, P., Qi, X., Roberts, D.A., Yoshida, B.: Chaos in quantum channels. J. High Energy Phys. 2016(2), 004 (2016)

    MathSciNet  MATH  Google Scholar 

  41. Nengkun, Y., Duan, R., Quanhua, X.: Bounds on the distance between a unital quantum channel and the convex hull of unitary channels. IEEE Trans. Inf. Theory 63(2), 1299–1310 (2017)

    MathSciNet  MATH  Google Scholar 

  42. Gyongyosi, L., Imre, S., Nguyen, H.V.: A Survey on quantum channel capacities. IEEE Commun. Surveys Tutor. 20(2), 1149–1205 (2018)

    Google Scholar 

  43. Ndagano, B., Perez-Garcia, B., Roux, F.S., McLaren, M., Rosales-Guzman, C., Zhang, Y., Mouane, O., Hernandez-Aranda, R.I., Konrad, T., Forbes, A.: Characterizing quantum channels with non-separable states of classical light. Nat. Phys. 13(4), 397–402 (2017)

    Google Scholar 

  44. Feng, L., Zhang, M., Zhou, Z., Chen, Y., Li, M., Dai, D., Ren, H., Guo, G., Guo, G., Tame, M., et al.: Generation of a frequency-degenerate four-photon entangled state using a silicon nanowire. Quantum Inf. 5(1), 1–7 (2019)

    Google Scholar 

  45. Chaoyang, L., Zhou, X., Guhne, O., Gao, W., Zhang, J., Yuan, Z., Goebel, A., Yang, T., Pan, J.: Experimental entanglement of six photons in graph states. Nat. Phys. 3(2), 91–95 (2007)

    Google Scholar 

  46. Rubino, G., Rozema, LA., Feix, Adrien, Araújo, Mateus, Z., Jonas M., Procopio, Lorenzo M., Brukner, Časlav, Walther, Philip: Experimental verification of an indefinite causal order. Sci. Adv. 3(3), (2017)

  47. Orieux, A., Darrigo, A., Ferranti, G., Franco, R.L., Benenti, G., Paladino, E., Falci, G., Sciarrino, F., Mataloni, P.: Experimental on-demand recovery of entanglemnt by local operations within non-markovian dynamics. Sci. Rep. 5(1), 8575–8575 (2015)

    ADS  Google Scholar 

  48. Bryan, J., Leutheusser, S., Reichstein, Z., Van Ramsdonk, M.: Locally maximally entangled states of multipart quantum systems. Quantum 3, 6 (2019)

    Google Scholar 

  49. Bryan, J., Reichstein, Z., Van Raamsdonk, M.: Existence of locally maximally entangled quantum states via geometric invariant theory. Annales Henri Poincaré 19(8), 2491–2511 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  50. Glancy, S., Knill, E., Vasconcelos, H.M.: Entanglement purification of any stabilizer state. Phys. Rev. A 74, 032319 (2006)

    ADS  MathSciNet  Google Scholar 

  51. Kruszynska, C., Kraus, B.: Local entanglability and multipartite entanglement. Phys. Rev. A 79, 052304 (2009)

    ADS  MathSciNet  Google Scholar 

  52. Ri, Q., Ma, Y., Wang, B., Bao, Y.: Relationship among locally maximally entangleable states, \(W\) states, and hypergraph states under local unitary transformations. Phys. Rev. A 87, 052331 (2013)

    ADS  Google Scholar 

  53. Gottesman, D.: Class of quantum error-correcting codes saturating the quantum hamming bound. Phys. Rev. A 54, 1862–1868 (1996)

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the NNSF of China (Grant No. 11871089), and the Fundamental Research Funds for the Central Universities (Grant No. ZG216S2005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengyao Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Hu, M. Locally maximally mixed states. Quantum Inf Process 19, 305 (2020). https://doi.org/10.1007/s11128-020-02804-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02804-4

Navigation