Skip to main content
Log in

Construction of a quantum Carnot heat engine cycle

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The microscopic state description of an irreversible quantum Carnot cycle for a general quantum working medium is investigated. An efficiency lag term, which quantifies the deviation of the irreversible cycle efficiency from the classical Carnot efficiency, is given in terms of the total entropy increase in the universe. The efficiency lag and the total entropy increase in the universe are directly connected to the quantum relative entropy between the density matrices obtained at the end of the quantum adiabatic and the relaxation steps of the cycle. The total entropy increase and the efficiency lag are found to be always nonnegative quantities. Our results give a direct proof that the irreversible cycle efficiency is always smaller than the classical Carnot efficiency. Two interacting spins under an external magnetic field are proposed as the working medium of the irreversible quantum Carnot cycle. The external magnetic field is considered to be quasistatically changed during the steps of the cycle. The coupling between the spins is found to break down the scale invariance and make the quantum Carnot cycle irreversible. It is shown that while the quantum coupling can lower the cycle efficiency monotonically to zero, it can make the irreversible cycle to produce more work than the one obtained from the uncoupled spins. The conditions in which one can always construct a reversible Carnot cycle for the coupled spin working medium are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Quan, H.T., Liu, Y.X., Sun, C.P., Nori, F.: Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 76, 031105 (2007)

    ADS  MathSciNet  Google Scholar 

  2. Quan, H.T.: Quantum thermodynamic cycles and quantum heat engines II. Phys. Rev. E 79, 041129 (2009)

    ADS  MathSciNet  Google Scholar 

  3. Kieu, T.D.: The second law, Maxwell’s demon, and work derivable from quantum heat engines. Phys. Rev. Lett. 93, 140403 (2004)

    ADS  MathSciNet  Google Scholar 

  4. Scovil, H.E.D., Schulz-DuBois, E.O.: Three level masers as heat engines. Phys. Rev. Lett. 2, 262–263 (1959)

    ADS  Google Scholar 

  5. Roßnagel, J., Abah, O., Schmidt-Kaler, F., Singer, K., Lutz, E.: Nanoscale heat engine beyond the Carnot limit. Phys. Rev. Lett. 112, 030602 (2014)

    ADS  Google Scholar 

  6. Abah, O., Roßnagel, J., Jacob, G., Deffner, S., Schmidt-Kaler, F., Singer, K., Lutz, E.: Single-ion heat engine at maximum power. Phys. Rev. Lett. 109, 203006 (2012)

    ADS  Google Scholar 

  7. Fialko, O., Hallwood, D.W.: Isolated quantum heat engine. Phys. Rev. Lett. 108, 085303 (2012)

    ADS  Google Scholar 

  8. Zhang, K., Bariani, F., Meystre, P.: Quantum optomechanical heat engine. Phys. Rev. Lett. 112, 150602 (2014)

    ADS  Google Scholar 

  9. Sothmann, B., Büttiker, M.: Magnon-driven quantum-dot heat engine. EPL 99, 27001 (2012)

    ADS  Google Scholar 

  10. Quan, H.T., Zhang, P., Sun, C.P.: Quantum-classical transition of photon-Carnot engine induced by quantum decoherence. Phys. Rev. E 73, 036122 (2006)

    ADS  Google Scholar 

  11. Altintas, F., Hardal, A.Ü.C., Müstecaplıoğlu, Ö.E.: Rabi model as a quantum coherent heat engine: from quantum biology to superconducting circuits. Phys. Rev. A 91, 023816 (2015)

    ADS  Google Scholar 

  12. Harris, S.E.: Electromagnetically induced transparency and quantum heat engines. Phys. Rev. A 94, 053859 (2016)

    ADS  Google Scholar 

  13. Rossnagel, J., Dawkins, S.T., Tolazzi, K.N., Abah, O., Lutz, E., Schmidt-Kaler, F., Singer, K.: A single-atom heat engine. Science 352, 325–329 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Peterson, J.P.S., Batalhão, T.B., Herrera, M., Souza, A.M., Sarthour, R.S., Oliveira, I.S., Serra, R.M.: Experimental characterization of a spin quantum heat engine. Phys. Rev. Lett. 123, 240601 (2019)

    ADS  Google Scholar 

  15. de Assis, R.J., de Mendonça, T.M., Villas-Boas, C.J., de Souza, A.M., Sarthour, R.S., Oliveira, I.S., de Almeida, N.G.: Efficiency of a quantum Otto heat engine operating under a reservoir at effective negative temperatures. Phys. Rev. Lett. 122, 240602 (2019)

    Google Scholar 

  16. Zou, Y., Jiang, Y., Mei, Y., Guo, X., Du, S.: Quantum heat engine using electromagnetically induced transparency. Phys. Rev. Lett. 119, 050602 (2017)

    ADS  Google Scholar 

  17. Klatzow, J., Becker, J.N., Ledingham, P.M., Weinzetl, C., Kaczmarek, K.T., Saunders, D.J., Nunn, J., Walmsley, I.A., Uzdin, R., Poem, E.: Experimental demonstration of quantum effects in the operation of microscopic heat engines. Phys. Rev. Lett. 122, 110601 (2019)

    ADS  Google Scholar 

  18. von Lindenfels, D., Gräb, O., Schmiegelow, C.T., Kaushal, V., Schulz, J., Mitchison, M.T., Goold, J., Schmidt-Kaler, F., Poschinger, U.G.: Spin heat engine coupled to a harmonic-oscillator flywheel. Phys. Rev. Lett. 123, 080602 (2019)

    Google Scholar 

  19. Scully, M.O., Zubairy, M.S., Agarwal, G.S., Walther, H.: Extracting work from a single heat bath via vanishing quantum coherence. Science 299, 862–864 (2003)

    ADS  Google Scholar 

  20. Dillenschneider, R., Lutz, E.: Energetics of quantum correlations. Europhys. Lett. 88, 50003 (2009)

    ADS  Google Scholar 

  21. Türkpençe, D., Altintas, F., Paternostro, M., Müstecaplıoğlu, Ö.E.: A photonic Carnot engine powered by a spin-star network. EPL 117, 50002 (2017)

    ADS  Google Scholar 

  22. Hardal, A.Ü.C., Müstecaplıoğlu, Ö.E.: Superradiant quantum heat engine. Sci. Rep. 5, 12953 (2015)

    ADS  Google Scholar 

  23. Zhang, X.Y., Huang, X.L., Yi, X.X.: Quantum Otto heat engine with a non-Markovian reservoir. J. Phys. A Math. Theor. 47, 455002 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Huang, X.L., Wang, T., Yi, X.X.: Effects of reservoir squeezing on quantum systems and work extraction. Phys. Rev. E 86, 051105 (2012)

    ADS  Google Scholar 

  25. Uzdin, R., Levy, A., Kosloff, R.: Equivalence of quantum heat machines, and quantum-thermodynamic signatures. Phys. Rev. X 5, 031044 (2015)

    Google Scholar 

  26. Uzdin, R.: Coherence-induced reversibility and collective operation of quantum heat machines via coherence recycling. Phys. Rev. Appl. 6, 024004 (2016)

    ADS  Google Scholar 

  27. Jaramillo, J., Beau, M., del Campo, A.: Quantum supremacy of many-particle thermal machines. New J. Phys. 18, 075019 (2016)

    ADS  Google Scholar 

  28. Zhang, T., Liu, W.-T., Chen, P.-X., Li, C.-Z.: Four-level entangled quantum heat engines. Phys. Rev. A 75, 062102 (2007)

    ADS  Google Scholar 

  29. Thomas, G., Johal, R.S.: Coupled quantum Otto cycle. Phys. Rev. E 83, 031135 (2011)

    ADS  Google Scholar 

  30. del Campo, A., Goold, J., Paternostro, M.: More bang for your buck: super-adiabatic quantum engines. Sci. Rep. 4, 6208 (2015)

    Google Scholar 

  31. del Campo, A., Rams, M.M., Zurek, W.H.: Assisted finite-rate adiabatic passage across a quantum critical point: exact solution for the quantum Ising model. Phys. Rev. Lett. 109, 115703 (2012)

    ADS  Google Scholar 

  32. Deng, S., Chenu, A., Diao, P., Li, F., Yu, S., Coulamy, I., del Campo, A., Wu, H.: Superadiabatic quantum friction suppression in finite-time thermodynamics. Sci. Adv. 4, eaar5909 (2018)

    ADS  Google Scholar 

  33. Bender, C.M., Brody, D.C., Meister, B.K.: Quantum mechanical Carnot engine. J. Phys. A Math. Gen. 33, 4427–4436 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Çakmak, S., Türkpençe, D., Altintas, F.: Special coupled quantum Otto and Carnot cycles. Eur. Phys. J. Plus 132, 554 (2017)

    Google Scholar 

  35. Thomas, G., Johal, R.S.: Friction due to inhomogeneous driving of coupled spins in a quantum heat engine. Eur. Phys. J. B 87, 166 (2014)

    ADS  Google Scholar 

  36. Alecce, A., Galve, F., Gullo, N.L., Dell’Anna, L., Plastina, F., Zambrini, R.: Quantum Otto cycle with inner friction: finite-time and disorder effects. New J. Phys. 17, 075007 (2015)

    ADS  Google Scholar 

  37. Sato, K., Sekimoto, K., Hondou, T., Takagi, F.: Irreversibility resulting from contact with a heat bath caused by the finiteness of the system. Phys. Rev. E 66, 016119 (2002)

    ADS  Google Scholar 

  38. Deffner, S., Jarzynski, C., del Campo, A.: Classical and quantum shortcuts to adiabaticity for scale-invariant driving. Phys. Rev. X 4, 021013 (2014)

    Google Scholar 

  39. Feldmann, T., Kosloff, R.: Quantum lubrication: suppression of friction in a first-principles four-stroke heat engine. Phys. Rev. E 73, 025107(R) (2006)

    ADS  Google Scholar 

  40. Plastina, F., Alecce, A., Apollaro, T.J.G., Falcone, G., Francica, G., Galve, F., Lo Gullo, N., Zambrini, R.: Irreversible work and inner friction in quantum thermodynamic processes. Phys. Rev. Lett. 113, 260601 (2014)

    ADS  Google Scholar 

  41. Deffner, S., Lutz, E.: Generalized Clausius inequality for nonequilibrium quantum processes. Phys. Rev. Lett. 105, 170402 (2010)

    ADS  Google Scholar 

  42. Esposito, M., Lindenberg, K., Van den Broeck, C.: Entropy production as correlation between system and reservoir. New J. Phys. 12, 013013 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Francica, G., Goold, J., Plastina, F.: Role of coherence in the nonequilibrium thermodynamics of quantum systems. Phys. Rev. E 99, 042105 (2019)

    ADS  Google Scholar 

  44. Camati, P.A., Santos, J.F.G., Serra, R.M.: Coherence effects in the performance of the quantum Otto heat engine. Phys. Rev. A 99, 062103 (2019)

    ADS  Google Scholar 

  45. Rezek, Y.: Reflections on friction in quantum mechanics. Entropy 12, 1885–1901 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  46. Abe, S., Okuyama, S.: Similarity between quantum mechanics and thermodynamics: entropy, temperature, and Carnot cycle. Phys. Rev. E 83, 021121 (2011)

    ADS  Google Scholar 

  47. Quan, H.T.: Maximum efficiency of ideal heat engines based on a small system: correction to the Carnot efficiency at the nanoscale. Phys. Rev. E 89, 062134 (2014)

    ADS  Google Scholar 

  48. Xiao, G., Gong, J.: Construction and optimization of a quantum analog of the Carnot cycle. Phys. Rev. E 92, 012118 (2015)

    ADS  MathSciNet  Google Scholar 

  49. Gardas, B., Deffner, S.: Thermodynamic universality of quantum Carnot engines. Phys. Rev. E 92, 042126 (2015)

    ADS  Google Scholar 

  50. Xu, Y.Y., Chen, B., Liu, J.: Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine. Phys. Rev. E 97, 022130 (2018)

    ADS  Google Scholar 

  51. Lekscha, J., Wilming, H., Eisert, J., Gallego, R.: Quantum thermodynamics with local control. Phys. Rev. E 97, 022142 (2018)

    ADS  Google Scholar 

  52. Dann, R., Kosloff, R.: Quantum signatures in the quantum Carnot cycle. New J. Phys. 22, 013055 (2020)

    ADS  Google Scholar 

  53. Allahverdyan, A.E., Hovhannisyan, K.V., Melkikh, A.V., Gevorkian, S.G.: Carnot cycle at finite power: attainability of maximal efficiency. Phys. Rev. Lett. 111, 050601 (2013)

    ADS  Google Scholar 

  54. Batalhão, T.B., Souza, A.M., Sarthour, R.S., Oliveira, I.S., Paternostro, M., Lutz, E., Serra, R.M.: Irreversibility and the arrow of time in a quenched quantum system. Phys. Rev. Lett. 115, 190601 (2015)

    ADS  Google Scholar 

  55. Batalhão, T.B., Souza, A.M., Mazzola, L., Auccaise, R., Sarthour, R.S., Oliveira, I.S., Goold, J., De Chiara, G., Paternostro, M., Serra, R.M.: Experimental reconstruction of work distribution and study of fluctuation relations in a closed quantum system. Phys. Rev. Lett. 113, 140601 (2014)

    ADS  Google Scholar 

  56. Allahverdyan, A.E., Nieuwenhuizen, T.M.: Minimal work principle: proof and counterexamples. Phys. Rev. E 71, 046107 (2005)

    ADS  MathSciNet  Google Scholar 

  57. Campisi, M., Fazio, R.: Dissipation, correlation and lags in heat engines. J. Phys. A Math. Theor. 49, 345002 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  58. Tajima, H., Hayashi, M.: Finite-size effect on optimal efficiency of heat engines. Phys. Rev. E 96, 012128 (2017)

    ADS  Google Scholar 

  59. Shiraishi, N., Tajima, H.: Efficiency versus speed in quantum heat engines: rigorous constraint from Lieb–Robinson bound. Phys. Rev. E 96, 022138 (2017)

    ADS  Google Scholar 

  60. Köse, E., Çakmak, S., Gençten, A., Kominis, I.K., Müstecaplıoğlu, Ö.E.: Algorithmic quantum heat engines. Phys. Rev. E 100, 012109 (2019)

    ADS  Google Scholar 

  61. Çakmak, S., Altintas, F.: Quantum Carnot cycle with inner friction. Quantum Inf. Process. 19, 248 (2020)

    ADS  Google Scholar 

  62. Altintas, F.: Comparison of the coupled quantum Carnot and Otto cycles. Phys. A Stat. Mech. Appl. 523, 40 (2019)

    MathSciNet  Google Scholar 

  63. Hardal, A.Ü.C., Aslan, N., Wilson, C.M., Müstecaplıoğlu, Ö.E.: Quantum heat engine with coupled superconducting resonators. Phys. Rev. E 96, 062120 (2017)

    ADS  Google Scholar 

  64. Tuncer, A., Izadyari, M., Dağ, C.B., Ozaydin, F., Müstecaplıoğlu, Ö.E.: Work and heat value of bound entanglement. Quantum Inf. Process. 18, 373 (2019)

    ADS  MathSciNet  Google Scholar 

  65. Dağ, C.B., Niedenzu, W., Ozaydin, F., Müstecaplıoğlu, Ö.E., Kurizki, G.: Temperature control in dissipative cavities by entangled dimers. J. Phys. Chem. C 123, 4035–4043 (2019)

    Google Scholar 

  66. Huang, X.L., Yang, A.N., Zhang, H.W., Zhao, S.Q., Wu, S.L.: Two particles in measurement-based quantum heat engine without feedback control. Quantum Inf. Process. 19, 242 (2020)

    ADS  Google Scholar 

  67. Carnot, N.L.S.: Réflexions sur la puissance motrice du feu et sur les machines propres à dèvelopper cette puissance. Bachelier, Paris (1824)

    MATH  Google Scholar 

  68. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, New York (2000)

    MATH  Google Scholar 

  69. Štelmachovič, P., Bužek, V.: Quantum-information approach to the Ising model: entanglement in chains of qubits. Phys. Rev. A 70, 032313 (2004)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selçuk Çakmak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here, we explicitly derive the equivalence in Eq. (6). Using Boltzmann–Gibbs distribution \(P_n(i)=1/{Z(i)}\exp \{-\beta _i E_n(i)\}\), the thermodynamic entropy can be written into a useful form as

$$\begin{aligned} S(i)= & {} -k_B \sum _n P_n(i) \ln {P_n(i)} \nonumber \\= & {} k_B \beta _i \sum _n P_n(i) E_n(i) + k_B \sum _n P_n(i) \ln {Z(i)}\nonumber \\= & {} k_B \beta _i \left\langle H(i)\right\rangle + k_B \ln {Z(i)}, \end{aligned}$$
(10)

where \(\beta _{A}=\beta _{B}=(k_B T_H)^{-1}\equiv \beta _{H}\) and \(\beta _{C}=\beta _{D}=(k_B T_L)^{-1}\equiv \beta _{L}\). Using Eq. (10), the total entropy increase in the universe in Eq. (3) can be rewritten as

$$\begin{aligned} \varDelta S_{C^{\prime } \rightarrow C}^{\mathrm{total}}= & {} k_B \left[ \ln {Z(C)} - \ln {Z(B)} + \beta _L \left\langle H(C^{\prime })\right\rangle - \beta _H \left\langle H(B)\right\rangle \right] , \nonumber \\ \varDelta S_{A^{\prime } \rightarrow A}^{\mathrm{total}}= & {} k_B \left[ \ln {Z(A)} - \ln {Z(D)} + \beta _H \left\langle H(A^{\prime })\right\rangle - \beta _L \left\langle H(D)\right\rangle \right] . \end{aligned}$$
(11)

We are now in a position to show that Eq. (11) can also be given by the quantum relative entropy between the density matrices obtained at the end of the adiabatic and the relaxation processes of the cycle. First, consider the quantum relative entropy for the cycle process \(B \rightarrow C^{\prime } \rightarrow C\),

$$\begin{aligned} S(\rho _{C^{\prime }} || \rho _C)= & {} tr(\rho _{C^{\prime }} \ln {\rho _{C^{\prime }}}) - tr(\rho _{C^{\prime }} \ln {\rho _C)}. \end{aligned}$$
(12)

The first term on the right-hand side is simply the von Neumann entropy at instant \(C^{\prime }\) which is invariant under a unitary transformation. Therefore, using Eq. (10) it can be written as

$$\begin{aligned} tr(\rho _{C^{\prime }} \ln {\rho _{C^{\prime }}})= & {} -S(B)/k_B \nonumber \\= & {} -\beta _H \left\langle H(B)\right\rangle - \ln {Z(B)}. \end{aligned}$$
(13)

Using the spectral resolution of the Hamiltonian \(H(i)=\sum _n E_n(i) \left| n(i)\right\rangle \left\langle n(i)\right| \) and the density matrix \(\rho _i=\sum _n P_n(i) \left| n(i)\right\rangle \left\langle n(i)\right| \), the second term on the right-hand side of Eq. (12) can be expanded as,

$$\begin{aligned} tr(\rho _{C^{\prime }} \ln {\rho _C})= & {} tr\left( \rho _{C^{\prime }} \sum _n \ln {P_n(C)} \left| n(C)\right\rangle \left\langle n(C)\right| \right) \nonumber \\= & {} \sum _n \ln {P_n(C)} \left\langle n(C)\right| \rho _{C^{\prime }} \left| n(C)\right\rangle \nonumber \\= & {} \sum _n \left[ -\beta _L E_n(C) - \ln {Z(C)}\right] \left\langle n(C)\right| \rho _{C^{\prime }} \left| n(C)\right\rangle \nonumber \\= & {} -\beta _L \left\langle H(C^{\prime })\right\rangle -\ln {Z(C)}. \end{aligned}$$
(14)

Therefore, we get the following result

$$\begin{aligned} S(\rho _{C^{\prime }} || \rho _C) =\ln {Z(C)} - \ln {Z(B)} + \beta _L \left\langle H(C^{\prime })\right\rangle - \beta _H \left\langle H(B)\right\rangle . \end{aligned}$$
(15)

A similar calculation procedure can be applied for the relative entropy \(S(\rho _{A^{\prime }} || \rho _A)\). The result is

$$\begin{aligned} S(\rho _{A^{\prime }} || \rho _A) = \ln {Z(A)} - \ln {Z(D)} + \beta _H \left\langle H(A^{\prime })\right\rangle - \beta _L \left\langle H(D)\right\rangle . \end{aligned}$$
(16)

From the comparison of Eq. (11) with Eqs. (15) and (16), we immediately conclude the following results

$$\begin{aligned} \varDelta S_{C^{\prime } \rightarrow C}^{\mathrm{total}}= & {} k_B S(\rho _{C^{\prime }} || \rho _C), \nonumber \\ \varDelta S_{A^{\prime } \rightarrow A}^{\mathrm{total}}= & {} k_B S(\rho _{A^{\prime }} || \rho _A). \end{aligned}$$
(17)

With respect to the Klein’s inequality [68], \(\varDelta S_{C^{\prime } \rightarrow C}^{\mathrm{total}}\) and \(\varDelta S_{A^{\prime } \rightarrow A}^{\mathrm{total}}\) are always nonnegative quantities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çakmak, S., Çandır, M. & Altintas, F. Construction of a quantum Carnot heat engine cycle. Quantum Inf Process 19, 314 (2020). https://doi.org/10.1007/s11128-020-02831-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02831-1

Keywords

Navigation