Skip to main content
Log in

Probabilistic coherence distillation with assisted setting

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We consider the distillation of quantum coherence in the one-shot setting. The protocol is based on the probabilistic coherence distillation assisted by another party. In this context, coherent states including pure states and mixed states can be transformed into maximally coherent pure state with some probability and the maximal probability is defined as the maximal success probability of assistance. Then we show an upper bound for the maximal success probability of assistance for transforming d-dimensional mixed state to d-dimensional maximally coherent pure state. This upper bound is reached by all mixed states in two- and three-dimensional system and all incoherent states. A lower bound of the maximal success probability of assistance for the full-rank quantum states is also proposed. We also show an upper bound for the maximal success probability of assistance for transforming d-dimensional mixed state to \(m\ (m\le d)\)-dimensional maximally coherent pure state in general case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89(4), 041003 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  2. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113(14), 140401 (2014)

    Article  ADS  Google Scholar 

  3. Peng, Y., Jiang, Y., Fan, H.: Maximally coherent states and coherence-preserving operations. Phys. Rev. A 93(3), 032326 (2016)

    Article  ADS  Google Scholar 

  4. Yu, X.-D., Zhang, D.-J., Xu, G., Tong, D.: Alternative framework for quantifying coherence. Phys. Rev. A 94(6), 060302 (2016)

    Article  ADS  Google Scholar 

  5. Streltsov, A., Chitambar, E., Rana, S., Bera, M.N., Winter, A., Lewenstein, M.: Entanglement and coherence in quantum state merging. Phys. Rev. Lett. 116(24), 240405 (2016)

    Article  ADS  Google Scholar 

  6. Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116(12), 120404 (2016)

    Article  ADS  Google Scholar 

  7. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53(4), 2046 (1996a)

    Article  ADS  Google Scholar 

  8. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76(5), 722 (1996b)

    Article  ADS  Google Scholar 

  9. Rains, E.M.: Rigorous treatment of distillable entanglement. Phys. Rev. A 60(1), 173 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  10. Regula, B., Fang, K., Wang, X., Adesso, G.: One-shot coherence distillation. Phys. Rev. Lett. 121(1), 010401 (2018a)

    Article  ADS  Google Scholar 

  11. Chitambar, E., Streltsov, A., Rana, S., Bera, M., Adesso, G., Lewenstein, M.: Assisted distillation of quantum coherence. Phys. Rev. Lett. 116(7), 070402 (2016)

    Article  ADS  Google Scholar 

  12. Gour, G., Spekkens, R.W.: Entanglement of assistance is not a bipartite measure nor a tripartite monotone. Phys. Rev. A 73(6), 062331 (2006)

    Article  ADS  Google Scholar 

  13. Regula, B., Lami, L., Streltsov, A.: Nonasymptotic assisted distillation of quantum coherence. Phys. Rev. A 98(5), 052329 (2018b)

    Article  ADS  Google Scholar 

  14. Fang, K., Wang, X., Lami, L., Regula, B., Adesso, G.: Probabilistic distillation of quantum coherence. Phys. Rev. Lett. 121(7), 070404 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  15. Aberg, J.: Quantifying superposition. arXiv:quant-ph/0612146

  16. Chitambar, E., Gour, G.: Critical examination of incoherent operations and a physically consistent resource theory of quantum coherence. Phys. Rev. Lett. 117(3), 030401 (2016)

    Article  ADS  Google Scholar 

  17. Marvian, I., Spekkens, R.W.: How to quantify coherence: distinguishing speakable and unspeakable notions. Phys. Rev. A 94(5), 052324 (2016)

    Article  ADS  Google Scholar 

  18. Yadin, B., Ma, J., Girolami, D., Gu, M., Vedral, V.: Quantum processes which do not use coherence. Phys. Rev. X 6(4), 041028 (2016)

    Google Scholar 

  19. Liu, C., Guo, Y.-Q., Tong, D.: Enhancing coherence of a state by stochastic strictly incoherent operations. Phys. Rev. A 96(6), 062325 (2017)

    Article  ADS  Google Scholar 

  20. Zhao, M.-J., Ma, T., Fei, S.-M.: Coherence of assistance and regularized coherence of assistance. Phys. Rev. A 96(6), 062332 (2017)

    Article  ADS  Google Scholar 

  21. Schrödinger, E.: Discussion of probability relations between separated systems. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 31, pp. 555–563. Cambridge University Press (1935)

  22. Lo, H.-K., Popescu, S.: Concentrating entanglement by local actions: beyond mean values. Phys. Rev. A 63(2), 022301 (2001)

    Article  ADS  Google Scholar 

  23. Vidal, G.: Entanglement of pure states for a single copy. Phys. Rev. Lett. 83(5), 1046 (1999)

    Article  ADS  Google Scholar 

  24. Zhu, H., Ma, Z., Cao, Z., Fei, S.-M., Vedral, V.: Operational one-to-one mapping between coherence and entanglement measures. Phys. Rev. A 96(3), 032316 (2017)

    Article  ADS  Google Scholar 

  25. Du, S., Bai, Z., Guo, Y.: Conditions for coherence transformations under incoherent operations. Phys. Rev. A 91(5), 052120 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by Qin Xin Talents Cultivation Program, Beijing Information Science and Technology University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Jing Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, ZY., Zhao, MJ. Probabilistic coherence distillation with assisted setting. Quantum Inf Process 19, 363 (2020). https://doi.org/10.1007/s11128-020-02857-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02857-5

Keywords

Navigation