Skip to main content
Log in

Freezing and revival of quantum coherence in decoherent reservoir

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum coherence (QC) as a crucial physical resource plays the vital role in recent researches of quantum information science, whereas the QC within an open system unavoidably deteriorates due to the system–environment interacting. In this paper, we analyze the dynamics of QC when the initial state is exposed to Markovian and non-Markovian reservoirs, respectively. We analytically derive the dynamical conditions under which the QC is frozen in the Markovian reservoir and explore the underlying physical mechanisms by investigating the trade-off relation between QC and mixedness of system. In the non-Markovian reservoir, we demonstrate the damped revivals of QC and show that these revivals can be effectively enhanced by increasing the memory degree of reservoir. These findings might provide an insightful physical interpretation for the dynamical phenomena of QC exhibiting in complex systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    ADS  MATH  Google Scholar 

  2. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330 (2004)

    ADS  Google Scholar 

  3. Demkowicz-Dobrzanski, R., Maccone, L.: Using entanglement against noise in quantum metrology. Phys. Rev. Lett. 113, 250801 (2014)

    ADS  Google Scholar 

  4. Asbóth, J.K., Calsamiglia, J., Ritsch, H.: Computable measure of nonclassicality for light. Phys. Rev. Lett. 94, 173602 (2005)

    ADS  Google Scholar 

  5. Albrecht, A.: Some remarks on quantum coherence. J. Mod. Opt. 41, 2467 (1994)

    ADS  Google Scholar 

  6. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1995)

    MATH  Google Scholar 

  7. Åberg, J.: Catalytic coherence. Phys. Rev. Lett. 113, 150402 (2014)

    ADS  Google Scholar 

  8. Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015)

    ADS  Google Scholar 

  9. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  10. Li, C.M., Lambert, N., Chen, Y.N., Chen, G.Y., Nori, F.: Witnessing quantum coherence: from solid-state to biological systems. Sci. Rep. 2, 885 (2012)

    Google Scholar 

  11. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    ADS  Google Scholar 

  12. Streltsov, A., et al.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    ADS  MathSciNet  Google Scholar 

  13. Shao, L.H., Xi, Z.J., Fan, H., Li, Y.M.: The fidelity and trace norm distances for quantifying coherence. Phys. Rev. A 91, 042120 (2015)

    ADS  Google Scholar 

  14. Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)

    ADS  Google Scholar 

  15. Monras, A., Checińska, A., Ekert, A.: Witnessing quantum coherence in the presence of noise. New J. Phys. 16, 063041 (2014)

    ADS  Google Scholar 

  16. Li, H., et al.: Quantum coherence rather than quantum correlations reflect the effects of a reservoir on a system’s work capability. Phys. Rev. E 89, 052132 (2014)

    ADS  Google Scholar 

  17. Karpat, G., Cakmak, B., Fanchini, F.F.: Quantum coherence and uncertainty in the anisotropic XY chain. Phys. Rev. B 90, 104431 (2014)

    ADS  Google Scholar 

  18. Marvian, I., Spekkens, R.W.: Extending Noether’s theorem by quantifying the asymmetry of quantum states. Nat. Commun. 5, 3821 (2014)

    ADS  Google Scholar 

  19. Xi, Z.J., Li, Y.M., Fan, H.: Quantum coherence and correlations in quantum system. Sci. Rep. 5, 10322 (2015)

    Google Scholar 

  20. Dhayal, S., Rostovtsev, Y.V.: Effects of quantum coherence and interference in atoms near nanoparticles. Phys. Rev. A 93, 043405 (2016)

    ADS  Google Scholar 

  21. Zhang, Y.R., et al.: Quantifying coherence in infinite-dimensional systems. Phys. Rev. A 93, 012334 (2016)

    ADS  Google Scholar 

  22. Yao, Y., Dong, G.H., Ge, L., Li, M., Sun, C.P.: Maximal coherence in a generic basis. Phys. Rev. A 94, 062339 (2016)

    ADS  Google Scholar 

  23. Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)

    ADS  Google Scholar 

  24. Chanda, T., Bhattacharya, S.: Delineating incoherent non-Markovian dynamics using quantum coherence. Ann. Phys. (New York) 366, 1–12 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Yao, Y., Dong, G.H., Xiao, X., Li, M., Sun, C.P.: Interpreting quantum coherence through a quantum measurement process. Phys. Rev. A 96, 052322 (2017)

    ADS  Google Scholar 

  26. Streltsov, A., Adesso, G., Plenio, M.B.: Quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)

    ADS  MathSciNet  Google Scholar 

  27. Hu, M.L., Hu, X.Y., Wang, J.C., Peng, Y., Zhang, Y.R., Fan, H.: Quantum coherence and geometric quantum discord. Phys. Rep. 762, 1–100 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Song, X.K., Huang, Y.Q., Ling, J.J., Yung, M.H.: Quantifying quantum coherence in experimentally observed neutrino oscillations. Phys. Rev. A 98, 050302(R) (2018)

    ADS  Google Scholar 

  29. Yadin, B., Bogaert, P., Susa, C.E., Girolami, D.: Coherence and quantum correlations measure sensitivity to dephasing channels. Phys. Rev. A 99, 012329 (2019)

    ADS  Google Scholar 

  30. Shi, J.D., et al.: Inevitable degradation and inconsistency of quantum coherence in a curved space-time. Quantum Inf. Process. 18, 300 (2019)

    ADS  Google Scholar 

  31. Wang, J.C., Jing, J.L.: Quantum decoherence in noninertial frames. Phys. Rev. A 82, 032324 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Hu, M.L., Fan, H.: Evolution equation for geometric quantum correlation measures. Phys. Rev. A 91, 052311 (2015)

    ADS  Google Scholar 

  33. Hu, M.L., Lian, H.L.: Geometric quantum discord and non-Markovianity of structured reservoirs. Ann. Phys. 362, 795–804 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Shi, J.D., et al.: Purifying two-qubit entanglement in nonidentical decoherence by employing weak measurements. Quantum Inf. Process. 14, 1387–1397 (2015)

    ADS  MATH  Google Scholar 

  35. Shi, J.D., et al.: Revival and robustness of Bures distance discord under decoherence channels. Phys. Lett. A 380, 843–847 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., et al.: Operational Markov condition for quantum processes. Phys. Rev. Lett. 120, 040405 (2018)

    ADS  Google Scholar 

  37. Bellomo, B., Franco, R.L., Compagno, G.: Non-Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502 (2007)

    ADS  Google Scholar 

  38. Fanchini, F.F., et al.: Non-Markovian dynamics of quantum discord. Phys. Rev. A 81, 052107 (2010)

    ADS  Google Scholar 

  39. Zhang, A.W., Zhang, K.Y., Zhou, L., Zhang, W.P.: Frozen condition of quantum coherence for atoms on a stationary trajectory. Phys. Rev. Lett. 121, 073602 (2018)

    ADS  Google Scholar 

  40. Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114, 210401 (2015)

    ADS  Google Scholar 

  41. Wang, J.C., Tian, Z.H., Jing, J.L., Fan, H.: Irreversible degradation of quantum coherence under relativistic motion. Phys. Rev. A 93, 062105 (2016)

    ADS  Google Scholar 

  42. Du, M.M., Wang, D., Ye, L.: How Unruh effect affects freezing coherence in decoherence. Quantum Inf. Process. 16, 228 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Cianciaruso, M., et al.: Universal freezing of quantum correlations within the geometric approach. Sci. Rep. 5, 10177 (2015)

    ADS  Google Scholar 

  44. Silva, I.A., et al.: Observation of time-invariant coherence in a nuclear magnetic resonance quantum simulator. Phys. Rev. Lett. 117, 160402 (2016)

    ADS  Google Scholar 

  45. Peters, N.A., Wei, T.C., Kwiat, P.G.: Mixed-state sensitivity of several quantum-information benchmarks. Phys. Rev. A 70, 052309 (2004)

    ADS  Google Scholar 

  46. Horodecki, M., Horodecki, P., Oppenheim, J.: Reversible transformations from pure to mixed states and the unique measure of information. Phys. Rev. A 67, 062104 (2003)

    ADS  MathSciNet  Google Scholar 

  47. Singh, U., et al.: Maximally coherent mixed states: complementarity between maximal coherence and mixedness. Phys. Rev. A 91, 052115 (2016)

    ADS  Google Scholar 

  48. Horodecki, R., Horodecki, M.: Information-theoretic aspects of inseparability of mixed states. Phys. Rev. A 54, 1838 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  49. Garraway, B.M.: Nonperturbative decay of an atomic system in a cavity. Phys. Rev. A 55, 2290 (1997)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation of China under Grant Nos. 11847020 and 11605028, the Anhui Provincial Natural Science Foundation under Grant Nos. 1908085QA41 and 1908085MA24, the Natural Science Research Project of Education Department of Anhui Province of China under Grant Nos. KJ2018A0342, KJ2018A0334 and KJ2018A0343, the Open Foundation for CAS Key Laboratory of Quantum Information under Grant No. KQI201804, the key Program of Excellent Youth Talent Project of the Education Department of Anhui Province of China under Grant No. gxyqZD2016190, the Research Center for Quantum Information Technology of Fuyang Normal University under Grant No. kytd201706 and also by the Doctoral Foundation of Fuyang Normal University under Grant Nos. 2017kyqd0013, 2018kyqd0013 and FYNU1602.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Wang, Y., Liu, C. et al. Freezing and revival of quantum coherence in decoherent reservoir. Quantum Inf Process 19, 385 (2020). https://doi.org/10.1007/s11128-020-02892-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02892-2

Keywords

Navigation