Skip to main content
Log in

Maximum information gain of approximate quantum position measurement

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We perform a quantum information analysis for multi-mode Gaussian approximate position measurements, underlying noisy homodyning in quantum optics. The “Gaussian maximizer” property is established for the entropy reduction of these measurements which provides explicit formulas for computations of their maximum information gain or entanglement-assisted capacity. The case of one mode is discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. We denote \(\mathrm {Sp}\) trace of matrices as distinct from the trace of operators in \({\mathcal {H}}\) and \(I_{2s}\) the unit \(2s\times 2s\)-matrix.

  2. We denote by \(I_{s}\) the unit \(s\times s-\)matrix.

References

  1. Barchielli, A., Lupieri, G.: Instruments and mutual entropies in quantum information. Banach Center Public. 73, 65–80 (2006)

    Article  MathSciNet  Google Scholar 

  2. Berta, M., Renes, J.M., Wilde, M.M.: Identifying the information gain of a quantum measurement. IEEE Trans. Inform. Theory 60(12), 7987–8006 (2014)

    Article  MathSciNet  Google Scholar 

  3. Caves, C.M., Drummond, P.D.: Quantum limits on bosonic communication rates. Rev. Mod. Phys. 68(2), 481–537 (1994)

    Article  ADS  Google Scholar 

  4. De Palma, G., Mari, A., Giovannetti, V., Holevo, A.S.: Normal form decomposition for Gaussian-to-Gaussian superoperators. J. Math. Phys. 56(5), 052202 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  5. Hall, M.J.W.: Quantum information and correlation bounds. Phys. Rev. A 55, 1050–2947 (1997)

    Article  Google Scholar 

  6. Holevo, A.S.: Information capacity of quantum observable. Problems Inform. Transm. 48(1), 1–10 (2012). arXiv:1103.2615

  7. Holevo, A.S.: Quantum Systems, Channels, Information: A Mathematical Introduction, 2nd edn. De Gruyter, Berlin (2019)

    Book  Google Scholar 

  8. Holevo, A.S.: Gaussian maximizers for quantum Gaussian observables and ensembles. IEEE Trans. Inform. Theory 66, 5634-5641 (2020)

  9. Holevo, A.S., Kuznetsova, A.A.: Information capacity of continuous variable measurement channel. J. Phys. A: Math. Theor. 53, 175304 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  10. Holevo, A.S., Kuznetsova, A.A.: The information capacity of entanglement-assisted continuous variable measurement. J. Phys. A Math. Theor. 53, 375307 (2020)

    Article  MathSciNet  Google Scholar 

  11. Kuznetsova, A.A., Holevo, A.S.: Coding theorems for hybrid channels. Theory Probab. Appl. 58(2), 298–324 (2013)

    Article  MathSciNet  Google Scholar 

  12. Kuznetsova, A.A., Holevo, A.S.: Coding theorems for hybrid channels. II. Theory Probab. Appl. 59(1), 145–154 (2015). arXiv:1408.3255

  13. Ozawa, M.: On information gain by quantum measurements of continuous observables. J. Math. Phys. 27(3), 759–763 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  14. Serafini, A.: Quantum Continuous Variables: A Primer of Theoretical Methods. CRC Press, Boca Raton (2017)

    Book  Google Scholar 

  15. Shirokov, M.E.: Entropy reduction of quantum measurements. J. Math. Phys. 52(5), 052202 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  16. Winter, A., Massar, S.: Compression of quantum measurement operations. Phys. Rev. A 64, 012311 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Holevo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work was supported by the grant of Russian Science Foundation (Project No. 19-11-00086).

Appendix

Appendix

The kernel of a Gaussian density operator \(\rho _{m,\alpha }\) with the mean \( m_{q},m_{p}\) and the covariance matrix (7) in the Schrödinger representation has the form

$$\begin{aligned} \langle \xi |\rho _{\alpha }|\xi ^{\prime }\rangle =\frac{1}{\sqrt{\left( 2\pi \right) ^{s}\det \alpha _{qq}}}\exp \left[ \mu \left( m;\xi ,\xi ^{\prime }\right) -\frac{1}{2}\theta \left( \xi ,\xi ^{\prime }\right) \right] , \end{aligned}$$
(39)

where

$$\begin{aligned} \mu \left( m;\xi ,\xi ^{\prime }\right)= & {} \frac{1}{2}m_{q}^{t}\alpha _{qq}^{-1}\left( \xi ^{\prime }+\xi \right) -i\left( m_{p}-\alpha _{pq}\alpha _{qq}^{-1}m_{q}\right) ^{t}\left( \xi ^{\prime }-\xi \right) \nonumber \\&- \frac{1}{2}m_{q}^{t}\alpha _{qq}^{-1}m_{q}, \end{aligned}$$
(40)
$$\begin{aligned} \theta \left( \xi ,\xi ^{\prime }\right)= & {} \frac{1}{4}\left( \xi ^{\prime }+\xi \right) ^{t}\alpha _{qq}^{-1}\left( \xi ^{\prime }+\xi \right) +\left( \xi ^{\prime }-\xi \right) ^{t}\left( \alpha _{pp}-\alpha _{pq}\alpha _{qq}^{-1}\alpha _{qp}\right) \left( \xi ^{\prime }-\xi \right) \nonumber \\&+i\left( \xi ^{\prime }+\xi \right) ^{t}\alpha _{qq}^{-1}\alpha _{qp}\left( \xi ^{\prime }-\xi \right) . \end{aligned}$$
(41)

Proof

The quantum characteristic function of \(\rho _{m,\alpha }\) is

$$\begin{aligned} \varphi (x,y)=\mathrm {Tr}\rho _{m,\alpha }W(x,y)=\exp \left[ im(x,y)-\frac{1}{2} \alpha (x,y)\right] , \end{aligned}$$

where

$$\begin{aligned} \begin{aligned} m(x,y)&= m_q x + m_p y ,\\ \alpha (x,y)&= x^t \alpha _{qq} x + x^t \alpha _{qp} y + y^t \alpha _{pq} x + y^t \alpha _{pp} y \end{aligned} \end{aligned}$$

and \(W(x,y)=e^{ix^{t}y/2}e^{ix^{t}q}e^{iy^{t}p}\) is the Weyl operator. The kernel of the Weyl operator is

$$\begin{aligned} \langle \xi \vert W(x,y)\vert \xi '\rangle =\exp \left[ {i}\left( \frac{\xi +\xi ^{\prime }}{2} \right) ^{t}x\right] \delta (y-(\xi ^{\prime }-\xi ))=\exp \left( iu^{t}x\right) \delta (y-v). \end{aligned}$$

Here, we introduced the variables \(u=\frac{\xi +\xi ^{\prime }}{2}\), \(v=\xi ^{\prime }-\xi \). Using the inversion formula for the quantum Fourier transform, we readily compute the kernel of the Gaussian state:

$$\begin{aligned} \langle \xi \vert \rho _{m,\alpha }\vert \xi '\rangle= & {} \int \frac{d^{s}xd^{s}y}{(2\pi )^{s}} \varphi (x,y)\langle \xi \vert W(-x,-y)\vert \xi '\rangle \\= & {} \int \frac{d^{s}x}{(2\pi )^{s}}\exp \left[ -iu^{t}x+im(x,-v)-\frac{1}{2} \alpha (x,-v)\right] , \end{aligned}$$

the expression under the exponent expands as

$$\begin{aligned} -im_{p}^{t}v-\frac{1}{2}v^{t}\alpha _{pp}v-i(u^{t}-m_{q}^{t}+iv^{t}\alpha _{pq})x-\frac{1}{2}x^{t}\alpha _{qq}x. \end{aligned}$$

Taking the s-dimensional Gaussian integral yields

$$\begin{aligned} \langle \xi \vert \rho _{\alpha }\vert \xi '\rangle= & {} \frac{e^{-im_{p}^{t}v-\frac{1}{2} v^{t}\alpha _{pp}v}}{\sqrt{(2\pi )^{s}\det {\alpha _{qq}}}}\exp \left[ - \frac{1}{2}(u-m_{q}+i\alpha _{qp}v)^{t}\alpha _{qq}^{-1}(u-m_{q}+i\alpha _{qp}v)\right] \\= & {} \frac{1}{\sqrt{(2\pi )^{s}\det {\alpha _{qq}}}}\exp \left[ \mu (m;\xi ,\xi ^{\prime })-\frac{1}{2}\theta (\xi ,\xi ^{\prime })\right] , \end{aligned}$$

where \(\mu (m;\xi ,\xi ^{\prime })\) and \(\theta (\xi ,\xi ^{\prime })\) are given by (40) and (41).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holevo, A.S., Yashin, V.I. Maximum information gain of approximate quantum position measurement. Quantum Inf Process 20, 97 (2021). https://doi.org/10.1007/s11128-021-03046-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03046-8

Keywords

Navigation