Skip to main content
Log in

Feasible noiseless linear amplification for single-photon qudit and two-photon hyperentanglement encoded in three degrees of freedom

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Hyper-encoded photon qudits and hyperentanglement can effectively increase the channel capacity and have been widely used in quantum communication field. Photon transmission loss is one of the main obstacles of quantum communication, which can reduce the communication efficiency and even threaten the security. In the paper, we propose a feasible noiseless linear amplification (NLA) protocol for protecting the single-photon qudit and two-photon hyperentanglement encoded in polarization and double-longitudinal momentum degrees of freedom (DOFs). The NLA protocol is in linear optics, and especially, it adopts practical imperfect single photon sources to generate auxiliary photons. As a result, it can be realized under current experimental condition. By performing the NLA protocol, we can increase the fidelity of target qudit and hyperentanglement and preserve their encoding features in all DOFs. This NLA protocol has application potential in current and future high-capacity quantum communication field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  MATH  Google Scholar 

  3. Hu, X.M., Zhang, C., Zhang, C.J., Liu, B.H., Huang, Y.F., Han, Y.J., Li, C.F., Guo, G.C.: Experimental certification for nonclassical teleportation. Q. Eng. 1, e3 (2019)

    Google Scholar 

  4. Yan, Z.H., Qin, J.L., Qin, Z.Z., Su, X.L., Jia, X.J., Xie, C.D., Peng, K.C.: Generation of non-classical states of light and their application in deterministic quantum teleportation. Fundam. Res. 1, 43–49 (2021)

    Article  Google Scholar 

  5. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, pp. 175. IEEE, New York (1984)

  6. Ekert, A.K.: Quantum crytography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Lu, W.Z., Huang, C.H., Hou, K., Shi, L.T., Zhao, H.H., Li, Z.M., Qiu, J.F.: Recurrent neural network approach to quantum signal: coherent state restoration for continuous-variable quantum key distribution. Quantum Inf. Process. 17, 109 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Yin, Z.Q., Lu, F.Y., Teng, J., Wang, S., Chen, W., Guo, G.C., Han, Z.F.: Twin-field protocols: towards intercity quantum key distribution without quantum repeaters. Fundam. Res. 1, 93–95 (2021)

    Article  Google Scholar 

  9. Guo, H., Li, Z.Y., Yu, S., Zhang, Y.C.: Toward practical quantum key distribution using telecom components. Fundam. Res. 1, 96–98 (2021)

    Article  Google Scholar 

  10. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  12. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  13. Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)

    Article  ADS  Google Scholar 

  14. Gao, Z.K., Li, T., Li, Z.H.: Long-distance measurement-device-independent quantum secure direct communication. EPL 125, 40004 (2019)

    Article  ADS  Google Scholar 

  15. Zhou, L., Sheng, Y.B., Long, G.L.: Device-independent quantum secure direct communication against collective attacks. Sci. Bull. 65, 12–20 (2020)

    Article  Google Scholar 

  16. Zhou, Z.R., Sheng, Y.B., Niu, P.H., Yin, L.G., Long, G.L.: Measurement-device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 63, 230362 (2020)

    Article  ADS  Google Scholar 

  17. He, R., Ma, J.G., Wu, J.W.: A quantum secure direct communication protocol using entangled beam pairs. EPL 127, 50006 (2019)

    Article  ADS  Google Scholar 

  18. Qin, H.W., Tang, W.K.S., Tso, R.: Establishing rational networking using the DL04 quantum secure direct communication protocol. Quantum Inf. Process. 17, 152 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. He, Y.F., Ma, W.P.: Multiparty quantum secure direct communication immune to collective noise. Quantum Inform. Process. 18, 4 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Wu, J.W., Lin, Z.S., Yin, L.G., Long, G.L.: Security of quantum secure direct communication based on Wyner’s wiretap channel theory. Quantum Eng. 1, e26 (2019)

    Article  Google Scholar 

  21. Collins, D., Gisin, N., Linden, N., Massar, S., Popescu, S.: Bell inequalities for arbitrarily high-dimensional systems. Phys. Rev. Lett. 88, 040404 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Vértesi, T., Pironio, S., Brunner, N.: Closing the detection loophole in Bell experiments using qudits. Phys. Rev. Lett. 104, 060401 (2010)

    Article  ADS  Google Scholar 

  23. Dada, A.C., Leach, J., Buller, G.S., Padgett, M.J., Andersson, E.: Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. Nat. Phys. 7, 677 (2011)

    Article  Google Scholar 

  24. Ikuta, T., Takesue, H.: Enhanced violation of the Collins–Gisin–Linden–Massar–Popescu inequality with optimized time-bin-entangled ququarts. Phys. Rev. A 93, 022307 (2016)

    Article  ADS  Google Scholar 

  25. Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using d-Level systems. Phys. Rev. Lett. 88, 127902 (2002)

    Article  ADS  Google Scholar 

  26. Sheridan, L., Scarani, V.: Security proof for quantum key distribution using qudit systems. Phys. Rev. A 82, 030301 (2010)

    Article  ADS  Google Scholar 

  27. Mafu, M., Dudley, A., Goyal, S., Giovannini, D., McLaren, M., Padgett, M.J., Konrad, T., Petruccione, F., Lütkenhaus, N., Forbes, A.: Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases. Phys. Rev. A 88, 032305 (2013)

    Article  ADS  Google Scholar 

  28. Chau, H., Wong, C., Wang, Q., Huang, T.: Qudit-based measurement-device-independent quantum key distribution using linear optics. arXiv: 1608.08329 (2016)

  29. Dellantonio, L., S\(\emptyset \)rensen, A., S\(\emptyset \)rensen, S., Bacco, D.: Highdimensional measurement-device-independent quantum key distribution on two-dimensional subspaces. Phys. Rev. A 98, 062301 (2018)

  30. Cui, Z.X., Zhong, W., Zhou, L., Sheng, Y.B.: Measurement-device-independent quantum key distribution with hyper-encoding. Sci. China Phys. Mech. Astron. 62, 110311 (2019)

    Article  ADS  Google Scholar 

  31. Yan, Y.F., Zhou, L., Zhong, W., Sheng, Y.B.: Measurement-device-independent quantum key distribution of multiple degrees of freedom of a single photon. Front. Phys. 16, 11501 (2021)

    Article  ADS  Google Scholar 

  32. Wang, X.L., Cai, X.D., Su, Z.E., et al.: Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516 (2015)

    Article  ADS  Google Scholar 

  33. Hu, X.M., Guo, Y., Liu, B.H., et al.: Beating the channel capacity limit for superdense coding with entangled ququarts. Sci. Adv. 4, eaat9304 (2018)

    Article  ADS  Google Scholar 

  34. Wu, F.Z., Yang, G.J., Wang, H.B., et al.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. China Phys. Mech. Astron. 60, 120313 (2017)

    Article  ADS  Google Scholar 

  35. Chen, S.S., Zhou, L., Zhong, W., Sheng, Y.B.: Three-step three-party quantum secure direct communication. Sci. China Phys. Mech. Astron. 61, 90312 (2018)

    Article  ADS  Google Scholar 

  36. Li, L.Y., Wang, T.J., Wang, C.: The analysis of high-capacity quantum secure direct communication using polarization and orbital angular momentum of photons. Mod. Phys. Lett. B 34, 2050017 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  37. Zou, Z.K., Zhou, L., Zhong, W., Sheng, Y.B.: Measurement-device-independent quantum secure direct communication of multiple degrees of freedom of a single photon. EPL 131, 40005 (2020)

    Article  ADS  Google Scholar 

  38. Vallone, G., Ceccarelli, R., Martini, F.D., Mataloni, P.: Hyperentanglement of two photons in three degrees of freedom. Phys. Rev. A 79, 030301(R) (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Vallone, G., Donati, G., Ceccarelli, R., Mataloni, P.: Six-qubit two-photon hyperentangled cluster states: characterization and application to quantum computation. Phys. Rev. A 81, 052301 (2010)

    Article  ADS  Google Scholar 

  40. Ralph, T.C., Lund, A.P.: Quantum communication measurement and computing. In: lvovsky, A. (ed.) Proceedings of the 9th International Conference, pp. 155-160. AIP, New York (2009)

  41. Gisin, N., Pironio, S., Sangouard, N.: Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier. Phys. Rev. Lett. 105, 070501 (2010)

    Article  ADS  Google Scholar 

  42. Curty, M., Moroder, T.: Heralded-qubit amplifiers for practical device-independent quantum key distribution. Phys. Rev. A 84, 010304 (2011)

    Article  ADS  Google Scholar 

  43. Pitkanen, D., Ma, X., Wickert, R., Loock, P.V., Lütkenhaus, N.: Effcient heralding of photonic qubits with applications to device-independent quantum key distribution. Phys. Rev. A 84, 022325 (2011)

    Article  ADS  Google Scholar 

  44. Xiang, G.Y., Ralph, T.C., Lund, A.P., Walk, N., Pryde, G.J.: Heralded noiseless linear amplification and distillation of entanglement. Nat. Photon. 4, 316 (2010)

    Article  Google Scholar 

  45. Zhang, S.L., Yang, S., Zou, X.B., Shi, B.S., Guo, G.C.: Protecting single-photon entangled state from photon loss with noiseless linear amplication. Phys. Rev. A 86, 034302 (2012)

    Article  ADS  Google Scholar 

  46. Osorio, C.I., Bruno, N., Sangouard, N., Zbinden, H., Gisin, N., Thew, R.T.: Heralded photon amplification for quantum communication. Phys. Rev. A 86, 023815 (2012)

    Article  ADS  Google Scholar 

  47. Meyer-Scott, E., Bula, M., Bartkiewicz, K., C̆ernoch, A., Soubusta, J., Jennewein, T., Lemr, K.: Entanglement-based linear-optical qubit amplifier. Phys. Rev. A 88, 012327 (2013)

  48. Kocsis, S., Xiang, G.Y., Ralph, T.C., Pryde, G.J.: Heralded noiseless amplification of a photon polarization qubit. Nat. Phys. 9, 23–28 (2013)

    Article  Google Scholar 

  49. Wang, T.J., Cao, C., Wang, C.: Linear-optical implementation of hyperdistillation from photon loss. Phys. Rev. A 89, 052303 (2014)

    Article  ADS  Google Scholar 

  50. Zhou, L., Sheng, Y.B.: Recyclable amplification protocol for the single-photon entangled state. Laser Phys. Lett. 12, 045203 (2015)

    Article  ADS  Google Scholar 

  51. Bruno, N., Pini, V., Martin, A., et al.: Heralded amplification of photonic qubits. Opt. Express 24, 125–133 (2016)

    Article  ADS  Google Scholar 

  52. Monteiro, F., Verbanis, E., Vivoli Caprara, V., Martin, A., Gisin, N., Zbinden, H., Thew, R.T.: Heralded amplification of path entangled quantum states. Quantum. Sci. Technol. 2, 024008 (2017)

    Article  ADS  Google Scholar 

  53. Zhou, L., Chen, L.Q., Zhong, W., Sheng, Y.B.: Recyclable amplification for single-photon entanglement from photon loss and decoherence. Laser Phys. Lett. 15, 015201 (2018)

    Article  ADS  Google Scholar 

  54. Wang, D.D., Jin, Y.Y., Qin, S.X., Zu, H., Zhou, L., Zhong, W., Sheng, Y.B.: Heralded noiseless amplification for single-photon entangled state with polarization feature. Quantum Inf. Process. 17, 56 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Chen, L.Q., Sheng, Y.B., Zhou, L.: Noiseless linear amplification for the single-photon entanglement of arbitrary polarization-time-bin qudit. Chin. Phys. B 28, 010302 (2019)

    Article  ADS  Google Scholar 

  56. Yang, G., Zhang, Y.S., Yang, Z.R., Zhou, L., Sheng, Y.B.: Linear-optical heralded amplification protocol for two-photon spatial-mode-polarization hyperentangled state. Quantum Inf. Process. 18, 317 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  57. Tsujimoto, Y., You, C., Wakui, K. et al.: Heralded amplification of nonlocality via entanglement swapping for long-distance device-independent quantum key distribution. New J. Phys. 22, 023008 (2020)

  58. Winne, M., Hosseinideha, N., Ralph, T.C.: Generalised quantum scissors for noiseless linear amplification.Phys. Rev. A 102, 063715 (2020)

  59. Li, Y.P., Zhang, J., Xu, B.W., Zhou, L., Zhong, W., Sheng, Y.B.: Entanglement-assisted noiseless linear amplification for arbitrary two-photon polarization-time-bin hyperentanglement. Quantum Inf. Process. 19, 261 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  60. Yamamoto, T., Koashi, M., Imoto, N.: Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A 64, 012304 (2001)

    Article  ADS  Google Scholar 

  61. White, A.G., James, D.F.V., Eberhard, P.H., Kwiat, P.G.: Nonmaximally entangled states: production, characterization, and utilization. Phys. Rev. A 83, 03103 (2000)

    Google Scholar 

  62. Pittman, T., Jacobs, B., Franson, J.: Heralding single photons from pulsed parametric down-conversion. Opt. Commun. 246, 545–550 (2005)

    Article  ADS  Google Scholar 

  63. Zhang, W.J., You, L.X., Li, H., Huang, J., Lv, C.L., Zhang, L., Liu, X.Y., Wu, J.J., Wang, Z., Xie, X.M.: NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature. Sci. China Phys. Mech. Astron. 60, 120314 (2017)

    Article  Google Scholar 

  64. Lu, Y., Li, Q., Westly, D.A., Moille, G., Singh, A., Anant, V., Srinivasan, K.: Chip-integrated visible-telecom entangled photon pair source for quantum communication. Nat. Phys. 15, 373 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant Nos. 11974189 and 12005106 and the China Postdoctoral Science Foundation under Grant No. 2018M642293.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, BW., Zhang, J., Zhou, L. et al. Feasible noiseless linear amplification for single-photon qudit and two-photon hyperentanglement encoded in three degrees of freedom. Quantum Inf Process 20, 163 (2021). https://doi.org/10.1007/s11128-021-03096-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03096-y

Keywords

Navigation